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Local Features

Matching points across images important for: 
object identification (instance recognition)
object (class) recognition 
pose estimation
stereo (3-d shape)
motion estimate
stitching together photographs into a mosaic
etc



4

Today

Interesting points, correspondence.

Scale and rotation invariant descriptors [Lowe]
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Correspondence using window matching

Points are highly individually ambiguous…
More unique matches are possible with small 

regions of image.
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Correspondence using window matching

Left Right

error

disparity

scanline

Criterion function:



7

Sum of Squared (Pixel) Differences
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Image Normalization
• Even when the cameras are identical models, there 

can be differences in gain and sensitivity.
• The cameras do not see exactly the same surfaces, 

so their overall light levels can differ.
• For these reasons and more, it is a good idea to 

normalize the pixels in each window:
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Images as Vectors
“Unwrap”
image to form 
vector, using 
raster scan order
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Each window is a vector
in an m2 dimensional
vector space.
Normalization makes
them unit length.
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Image windows as vectors
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Possible metrics

Lw
)(dwRDistance?

Angle?
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Image Metrics
(Normalized) Sum of Squared Differences
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Local Features

Not all points are equally good for 
matching…
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Aperture Problem and Normal Flow



17

Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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(Review) Differential approach:
Optical flow constraint equation

),,(),,( tyxItttvytuxI =+++ δδδ
Brightness should stay 
constant as you track 
motion

),,(),,( tyxItItIvtIutyxI tyx =+++ δδδ

1st order Taylor series, 
valid for small tδ

0=++ tyx IvIuIConstraint equation 

“BCCE” - Brightness Change Constraint Equation
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Aperture Problem and Normal Flow
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Combining Local Constraints
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Lucas-Kanade: Integrate 
gradients over a Patch
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Local Patch Analysis
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Selecting Good Features
• What’s a “good feature”?

– Satisfies brightness constancy
– Has sufficient texture variation
– Does not have too much texture variation
– Corresponds to a “real” surface patch
– Does not deform too much over time
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Good Features to Track
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A u = b

When is This Solvable?
• A should be invertible 
• A should not be too small due to noise

– eigenvalues λ1 and λ2 of A should not be too small
• A should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)

Both conditions satisfied when min(λ1, λ2) > c
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Harris detector
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Auto-correlation matrix

• Auto-correlation matrix
– captures the structure of the local neighborhood
– measure based on eigenvalues of this matrix

• 2 strong eigenvalues =>  interest point
• 1 strong eigenvalue =>  contour
• 0 eigenvalue =>  uniform region

• Interest point detection
– threshold on the eigenvalues
– local maximum for localization
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Selecting Good Features

λ1 and  λ2 are large
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Selecting Good Features

large λ1, small λ2
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Selecting Good Features

small λ1, small λ2
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Today

Interesting points, correspondence.

Scale and rotation invariant descriptors [Lowe]



CVPR 2003 Tutorial

Recognition and Matching 
Based on Local Invariant 

Features

David Lowe 
Computer Science Department
University of British Columbia
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Invariant Local Features
• Image content is transformed into local feature 

coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features



Advantages of invariant local features

• Locality: features are local, so robust to 
occlusion and clutter (no prior segmentation)

• Distinctiveness: individual features can be 
matched to a large database of objects

• Quantity: many features can be generated for 
even small objects

• Efficiency: close to real-time performance

• Extensibility: can easily be extended to wide 
range of differing feature types, with each 
adding robustness
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Scale invariance
Requires a method to repeatably select points in location 

and scale:
• The only reasonable scale-space kernel is a Gaussian 

(Koenderink, 1984; Lindeberg, 1994)
• An efficient choice is to detect peaks in the difference of 

Gaussian pyramid (Burt & Adelson, 1983; Crowley & 
Parker, 1984 – but examining more scales)

• Difference-of-Gaussian with constant ratio of scales is a 
close approximation to Lindeberg’s scale-normalized 
Laplacian (can be shown from the heat diffusion 
equation)

Blur 

Res ample

Subtra ct

Blur 

Res ample

Subtra ct
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Scale space processed one octave at a time
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Key point localization
• Detect maxima and minima of 

difference-of-Gaussian in scale 
space

• Fit a quadratic to surrounding 
values for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 
2002)

• Taylor expansion around point:

• Offset of extremum (use finite 
differences for derivatives):

Blur 

Res ample

Subtra ct
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Select canonical orientation

0 2π

• Create histogram of local 
gradient directions computed 
at selected scale

• Assign canonical orientation 
at peak of smoothed 
histogram

• Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)
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Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle 
curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures
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SIFT vector formation
• Thresholded image gradients are sampled over 16x16 

array of locations in scale space
• Create array of orientation histograms
• 8 orientations x 4x4 histogram array = 128 dimensions
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Feature stability to noise
• Match features after random change in image scale & 

orientation, with differing levels of image noise
• Find nearest neighbor in database of 30,000 features
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Feature stability to affine change
• Match features after random change in image scale & 

orientation, with 2% image noise, and affine distortion
• Find nearest neighbor in database of 30,000 features
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Distinctiveness of features
• Vary size of database of features, with 30 degree affine 

change, 2% image noise
• Measure % correct for single nearest neighbor match
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A good SIFT features tutorial

http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf
By Estrada, Jepson, and Fleet.

http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf
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An application of SIFT features in my 
own research…
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The couch potato project:  
Learning from looking at images.

Bill Freeman, MIT
Joint work with:  Josef Sivic, Andrew Zisserman (Oxford);

Bryan Russell (MIT), Alyosha Efros (CMU).

December 18, 2004
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What can you learn about
object categories by simply 
looking at images?
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Labelled training databases
Labelling object classes in images is tedious, 
and can introduce biases.
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Discover topics

Find words

Form histograms
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SIFT (scale invariant feature transforms)

David Lowe,
IJCV 2004
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Visual words

• Vector quantize SIFT descriptors to a 
vocabulary of 2237 “visual words”.

• Heuristic design of descriptors makes these 
words somewhat invariant to:
– Lighting
– 2-d Orientation
– 3-d Viewpoint
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Examples of visual words
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More visual words
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Polysemy—the same word 
with different meanings 



60

Experiment E 
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Observation matrix – experiment E
Visual 
word #

Frame #

13.8 % non-zero entries



Binarized observation matrix –
experiment E

Frame #

Visual 
word #

13.8 % non-zero entries
62
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Example segmentations
Faces Background I
Motorbikes Background II
Airplanes Background III
Cars

Original images

Segmentations

All detected visual words

001986000117 000306 001448 010748 010758002359001567
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Faces
Motorbikes
Airplanes
Cars

Background I
Background II
Background III
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Faces
Motorbikes
Airplanes
Cars

Background I
Background II
Background III
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