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| ocal Features

Matching points across images important for:
object identification (instance recognition)
object (class) recognition
pose estimation
stereo (3-d shape)
motion estimate
stitching together photographs into a mosaic
etc



Today

Interesting points, correspondence.

Scale and rotation invariant descriptors [Lowe]



Correspondence using window matching

Points are highly individually ambiguous...

More unique matches are possible with small
regions of image.



Correspondence using window matching

Left Right

error
Criterion function: h/\/\J

dis'parity
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Sum of Squared (Pixel) Differences

Left Right
L{ . - LT | Wl_ WR
iE. -—L 2 : 1 a iy m e 5)

(XL’ yL) (XL _d’ YL)

w, and w; are corresponding m by m windows of pixels.

We define the window function :

W (X y)={u,v|X-2<u<x+3,y-2<v<y+0}

The SSD cost measures the intensity difference as a function of disparity :

Cr(X,y,d)Z Z[IL(U’V)_IR(u_d’V)]Z

(u,v)eW, (x,y)



Image Normalization

e Even when the cameras are identical models, there
can be differences in gain and sensitivity.

e The cameras do not see exactly the same surfaces,
so their overall light levels can differ.

* For these reasons and more, it Is a good idea to
normalize the pixels in each window:

| =5t > 1(u,v) Average pixel
(U)W, (x,Y)
IL me(x,y) = PN ICRY)5 Window magnitude
(U)W, (x,Y)
1(x,y) = (%, y) -1 Normalized pixel

Wi (X,Y)



Images as Vectors

Left Right “Unwrap™
E | Image to form
SR N
| -1 i raster scan order

W,
row 1 m
m
W m % row2 | |m
AN
Each window is a vector W —
in an m? dimensional L
vector space. row3 | M
Normalization makes a
them unit length.



Image windows as vectors
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Possible metrics

Distance? WR (d )
VVL

Angle?
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Image Metrics

(Normalized) Sum of Squared Differences

W (d) Cssp (d) = Z[fL(U1V)—fR(U—d,V)]Z

(u,v)eW, (x,y)

=W —wg (d)H2

Normalized Correlation

Cc(d) = DT (Ul (u—d,v)

(u,v)eWy (x,y)

=W, -W,(d)=cosé

d* =argmin,|w, —wg(d)| =argmax, w, -wg(d)
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| ocal Features

Not all points are equally good for
matching...
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Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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Aperture Problem and Normal Flow
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(Review) Differential approach:
Optical flow constraint equation

Brightness should stay
constant as you track

motion |(X Uét,y V&,t &)ZI(X,y,t)

15t order Taylor series,
valid for small Ot

(X, y,t) +uadtl, +vatl, +dtl, = 1(x,y,1)

Constraint equation

ul, +vl, +1,=0

“BCCE” - Brightness Change Constraint Equation



Aperture Problem and Normal Flow

Normal Flow;

u,

The gradient constraint:

\

V

Lu+l v+l =0

VieU =0

Defines a line in the (u,v) space

VI

— i

N\
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Combining Local Constraints

N ViteU =—I!
T ViZeU = I
N VI*eU =—I?

U etc.

24



| ucas-Kanade: Integrate
gradients over a Patch

Assume a single velocity for all pixels within an image patch

E(u,V) = Z(Ix(x, y)u+ly(x,y)v+lt)2

X,yel

D Uan b

Vv
On the LHS: sum of the 2x2 outer product
tensor of the gradient vector

(S viviT)g ==Y i,
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Local Patch Analysis
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Selecting Good Features

 What’s a “good feature”?

Satisfies brightness constancy

Has sufficient texture variation

Does not have too much texture variation
Corresponds to a “real” surface patch
Does not deform too much over time
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Good Features to Track

&5 LE

A u = b

When is This Solvable?

* A should be invertible
* A should not be too small due to noise
— eigenvalues A, and A, of A should not be too small
* A should be well-conditioned
— M/ A, should not be too large (A, = larger eigenvalue)

Both conditions satisfied when min(i,, A,) > C
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Harris detector

Auto-correlation matrix

D (1 (X ¥i))? DL X YOI, (X Vi)

(X, Vi )eW (X, Vi JEW
2
le(xk’yk)ly(xk’yk) Z(Iy(xk’yk))
| (X, Y )eW (X, Yi JEW

» Auto-correlation matrix
— captures the structure of the local neighborhood

— measure based on eigenvalues of this matrix
» 2 strong eigenvalues => interest point
» 1strong eigenvalue => contour
» 0 eigenvalue => uniform region

* [Interest point detection
— threshold on the eigenvalues
— local maximum for localization

29



Selecting Good Features

A, and A, are large,



Selecting Good Features

large ., small &, ,,



Selecting Good Features

small &,, small &, ,



Today

Interesting points, correspondence.

Scale and rotation invariant descriptors [Lowe]
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CVPR 2003 Tutorial

Recognition and Matching
Based on Local Invariant
Features

David Lowe
Computer Science Department
University of British Columbia



Invariant Local Features

* Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

\

&

=
_

35
SIFT Features



Advantages of invariant local features

« Locality: features are local, so robust to
occlusion and clutter (no prior segmentation)

 Distinctiveness: individual features can be
matched to a large database of objects

« Quantity: many features can be generated for
even small objects

« Efficiency: close to real-time performance

« Extensibility: can easily be extended to wide
range of differing feature types, with each
adding robustness



Scale Invariance

Requires a method to repeatably select points in location
and scale:

« The only reasonable scale-space kernel is a Gaussian
(Koenderink, 1984; Lindeberg, 1994)

« An efficient choice Is to detect peaks in the difference of
Gaussian pyramid (Burt & Adelson, 1983; Crowley &
Parker, 1984 — but examining more scales)

 Difference-of-Gaussian with constant ratio of scales is a
close approximation to Lindeberg’s scale-normalized
Laplacian (can be shown from the heat diffusion
equation)
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Scale space processed one octave at a time

Difference of
Gaussian Gaussian (DOG) 38



Key point localization

Detect maxima and minima of
difference-of-Gaussian in scale
space

Fit a quadratic to surrounding
values for sub-pixel and sub-scale
Interpolation (Brown & Lowe,
2002)

Taylor expansion around point:

oD”T 1 82D

Offset of extremum (use finite
differences for derivatives):

_82D_1 oD
ox2 ox

Py

4

s o S
L AT
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Select canonical orientation

e Create histogram of local
gradient directions computed
at selected scale

« Assign canonical orientation
at peak of smoothed
histogram

o Each key specifies stable 2D
coordinates (X, Y, scale,
orientation)

e .

o ¢ 2m



Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle
curvatures (Harris approach)

- o (2) 233x189 image

s

(b) 832 DOG extrema

B i oy uﬁT (c) 729 left after peak
i S SR e value threshold
) o e S gl (d) 536 left after testing
; _ e ratio of principle
curvatures

41



SIFT vector formation

e Thresholded image gradients are sampled over 16x16
array of locations in scale space

» Create array of orientation histograms
8 orientations X 4x4 histogram array = 128 dimensions

% ¥

Image gradients Keypoint descriptor




Feature stability to noise

o Match features after random change in image scale &
orientation, with differing levels of image noise

 Find nearest neighbor in database of 30,000 features

100
_____________ e Sy .
BU % ~--;r=________‘_'_' pi ik
‘‘‘‘‘‘‘‘‘‘‘ . It 'y
5 """""" L
T g0
o
v
T 40
:.1_‘.!
3 Keypoint location ——
Location & orientation —»=—
20 Nearest descriptor ---#-- =
0 i i
0% 2% 4%, 6% 8% 10%

Image noise 43



Feature stability to affine change

« Match features after random change in image scale &
orientation, with 2% image noise, and affine distortion

 Find nearest neighbor in database of 30,000 features

100

80

")
-

I
o

Correctly matched (%)

20 |

Keypoint location ——
Location & orientation --—--=---
Nearest descriptor - *ooe

10 20 30 40
Viewpoint angle (degrees)
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Distinctiveness of features

» Vary size of database of features, with 30 degree affine
change, 2% image noise

e Measure % correct for single nearest neighbor match

100

80 |

___________________

-----------
"""""""

(8 )]
-
T

Keypoint location & orientation ——
Correct nearest descriptor -

.
o

Correctly matched (%)

20

1000 10000 100000 45
Number of keypoints in database (log scale)



Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered 1mage with extensive occlusion, shown n the middle. The results of recognition are shown
on the right. A parallelogram i1s drawn around each recognized object showing the boundaries of the
original training image under the ath ne transformation solved for during recognition. Smaller squares

indicate the keypoints that were used for recognition.
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Figure 13: This example shows location recognition within a complex scene. The training images for
locations are shown at the upper left and the 640x3 15 pixel test image taken from a different viewpoint
15 on the upper right. The recognized regions are shown on the lower image, with keyvpoints shown
as squares and an outer parallelogram showing the boundaries of the training images under the atli ne

transform used for recognition.



A good SIFT features tutorial

http://www.cs.toronto.edu/~jepson/csc2503/tutSIFTO04.pdf

By Estrada, Jepson, and Fleet.
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http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf

An application of SIFT features in my
own research...
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The couch potato project:
Learning from looking at images.

Bill Freeman, MIT
Joint work with: Josef Sivic, Andrew Zisserman (Oxford);
Bryan Russell (MIT), Alyosha Efros (CMU).

December 18, 2004
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What can you learn about
object categories by simply
looking at images?



Labelled training databases

Labelling object classes in images is tedious,
and can introduce biases.

buildingRegion
roadRegion

carSide
carSide

1000

52

200 400 600 800 1000 1200 1400 1600
C:/atb/DATABASES/Wearable/Annotations/10feb04-stafic-cars-highland/IMG-0828-polygons.txt



Overview of our Method

Form histograms

Documents

Discover tOpICS

Vocabulary Words
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Extracting Words

e Find Interest points using
shape adapted (white) and
maximally stable (yellow)
regions

e Map ellipses to a circle

e Compute SIFT descriptor
over circle
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SIFT (scale invariant feature transforms)

David Lowe, EEs .

I,JCV 2004 Figure 13: This example shows location recognition within a complex scene. The training images for
locations are shown at the upper left and the 640x3 15 pixel test image taken from a different viewpomt
15 on the upper right. The recognized regions are shown on the lower image. with keypoints shown

as squares and an outer parallelogram showing the boundaries of the traming images under the affi ne >5
transform used for recognition.



Visual words

* Vector quantize SIFT descriptors to a
vocabulary of 2237 “visual words”.

 Heuristic design of descriptors makes these
words somewhat invariant to:
— Lighting
— 2-d Orientation
— 3-d Viewpoint
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Examples of visual words

EEEED
aEEEa
‘FEETR

VVOVO




More visual words
:ﬂi

EDEIEE]

(h)




Polysemy—the same word
with different meanings

2

(a)

<.
NN
.

Figure 3: Polysemy. Example of a single visual word correspond-
ing to two different (but locally similar) parts on two different ob-
ject categories. (a) Top row shows occurrences of this visual word
on the motorbike category, bottom row on the airplane category.
The parts tend to occur consistently on different categories, 1.e. this
visual word fires mostly on the motorbike saddle and the airplane
wing. (b) Corresponding normalized frames. Note the similarity
of the normalized patches.
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Experiment E




Observation matrix — experiment E

Visual
word #

Frame #

13.8 % non-zero entries
61l



Dllial14CU ol vauull Tliau lA —

Visual
word #

experiment

200

400

600

800

1200

1400

1600

1800

2000

2200 §

500 1000 1500 2000 2500 3000

Frame #

13.8 % non-zero entries
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Results: All Experiments

Ex | Categories pLSA LDA Texture
% # % # % #
A | 1,2ub 100 1 99 7 91 53
B | 1-3ub 100 2 96 40 |94 55
C | 1-3 97 56 | 96 71 91 170
D | 1-4 98 70 |87 365 |72 1060
E | 1-4 + bg 78 931 |77 970 |73 1174
F | 1-57-8+bg | 59 1515 | 64 1458 | 47 2093
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Example segmentations

Faces B Background |
Motorbikes [ Background II

Airplanes ] Background IlI
Cars

000117 000306 001448 001567 001986 002359 010748 640758
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1

Faces
Motorbikes
Airplanes
Cars

B Background |
B Background I
[ Background Il
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[ 1 Faces B Background |
I Motorbikes Background Il
1 Airplanes Background Il
B Cars




Figure 11: Multiple objects an image. (a) pLSA example: Two
objects are present in this image: a motorbike (topic 1 - green )
and a car (topic 6 - red). The learned mixture coefficients P (z|d)
are 0.41 (motorbikes - green), 0.02 (bg I - magenta), 0.16 (face -
yellow), 0.19 (bg II - cyan), 0.04 (bg III - blue), 0.14 (cars - red),
0.02 (airplane - black). In total there are 740 elliptical regions in
this image of which 95 (72 unique visual words) are shown (have
P(z|w,d) above 0.8). (b) LDA example: Two objects are present
in this image. a face (yellow) and a car (red). The learned mixing
weights # are 0.19 car (red), 0.07 motorbike (green), 0.16 airplane
(black), 0.14 background (blue), 0.44 face (yellow),
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