Context In vision
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The goal

Office scene



Why object detection Is a hard problem
Object classes =—————p-
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viewpoints
l Styles, lighting conditions, etc, etc, etc...

Need to detect Nclasses * Nviews * Nstyles, in clutter.
Lots of variability within classes, and across viewpoints.



Where Is the field of computer vision?

There are efficient solutions for
 Detecting few single object categories: g m ih -:|:
= . tj

 Detecting particular objects:

Lowe, 1999

From Leibe & Schiele, 2003

But the problem of multi-class and multi-view object
detection in a scene with clutter is still largely unsolved.



The ingredients

Object representations
Scene representations

Classifiers
Graphical models

Object features
Scene features



OBJECTS



Object representations

Models
e Constellations of parts

* Holistic representations
— Shape-appearance models

e Shapes, silohuetes
3D models



Object representations

Features
e Pixel intesities
e Patches

e SIFT
e Basic geometric forms (Geons, quadrics)



Learning representations

e Generative models
e Discriminative models



Shape-appearance models

e |dea

e Features
— Pixel intensities

* Representation

— Subspace model of shape and appearance
variations

— Generative model

AAM =T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter



Shape-appearance models
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« Statistical analysis

— shape model: X = Xpean + PDs
| — texture model: 9 = Umean + Pghy
rrm;, io — Texture, g o
mean « Parameters b, control modes of variation
S*MDE‘-‘

AAM =T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter



Shape-appearance models
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AAM uses an additional PCA, to reduce redundancy between texture and shape.
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Constelation models

e |dea

e Features
— Intensities, patches, SIFT features.

* Representation
— Parts base representation.

AAM =T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter



Constelations of parts
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Fischler & Elschlager, 1973 Perrett & Oram, 1993 Perona et al. ‘95
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e IR 7 Shape / deformation
Schmid 99 Belongie et al.“02 (CIUtter)
Lowe ‘99, Moreels ‘04 Correspondence

Slide from Perona 2005



SIFT features



Invariant Local Features

* Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters
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SIFT Features Slide from David Lowe



Build Scale-Space Pyramid

» All scales must be examined to identify scale-
Invariant features

* An efficient function is to compute the

Difference of Gaussian (DOG) pyramid (Burt &
Adelson, 1983)

Resample/ AN %
Blur T\ \ Q
AN

Slide from David Lowe



Key point localization

e Detect maxima and LT A

minima of difference- A A
_ _ Scale A AAA
of-Gaussian In scale A AT

space

Slide from David Lowe



Select dominant orientation

e Create histogram of local
gradient directions
computed at selected
scale

e Assign canonical
orientation at peak of
smoothed histogram

e .

o ¢ 2m

Slide from David Lowe



SIFT vector formation

 Thresholded image gradients are sampled over
16x16 array of locations in scale space

« Create array of orientation histograms
e 8 orientations x 4x4 histogram array = 128

-+ | ¥

Image gradients Keypoint descriptor
Slide from David Lowe




Invariant Local Features




Segmentation driven

e |dea

— Avoid scaning and reduce number of
candidates

 Features
— Blobs and image regions

* Representation
— An Image Is an arrangement of regions



Segmentation-recognition

Data :

118011 1050
WATER HARBOR ., SUN CLOUDS
SKY CLOUDS TIGER CAT WATER GRASS WATERSKY

Words are associated with the images
But correspondences between image regions and words are unknown

B Y o s
i

“sun sea sky” “sun sea sky”

Slide from Duygulu, 04 P. Duygulu, K. Barnard, N. de Freitas, D. Forsyth. ECCV 02



Discriminative approach

e |dea

e Features
— Pixel intensities, wavelets, patches

* Representation
— Any of the representations before



Cascade of classifiers

» Graded Learning for Object Detection - Fleuret, Geman (1999)
» Robust Real-time Object Detection - Viola, Jones (2001)

Cascade: classifiers of increasing complexity. Low miss rate.

All 5ub-windows

T . T T Further
1 = Processing
F F F
Reject Sub—window

Features: stumps, inspired from haar wavelets

Y=




Short introduction to Boosting



Why use boosting?

« Creates very accurate, very fast
classifiers.

e Training is fast and easy to implement.

« Can handle high-dimensional data
(stumps perform feature selection).

* Robust to overfitting (implicitly
maximizes margin).



Boosted decision trees

o “Best off-the-shelf classifier in the world”
— Leo Breiman, 1998

1 node tree = “stump”
f(z;0 = (a,b,d,9)) =alzg > ¢] +d

e (Can be used for feature selection.

* Pick best dimension d and threshold ¢ by
exhaustive search.

* Pick best slope a and offset b using weighted
least squares.



Additive models for classification

M
H(v,c) = Z hom (v, €
m=1

| Y')

classes
+1/-1 classification feature responses

h..(v,c) Is a weak classifier (performs better than chance)

H (v,c) Is the strong classifier obtained as a sum of weak classifiers



Example of weak classifier (stumps)

Strength ul feature response
a

N (V)
b 0 "V
A decision stump is a threshold on a single feature

Each decision stump has 4 parameters: {f, 0, a, b}
f = template index (selected among a dictionary of 2000 templates)

0 = Threshold,
a,b = average class value (-1, +1) at each side of the threshold



Flavors of boosting

e Different boosting algorithms use different loss
functions or minimization procedures
(Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998).

 \We base our approach on Gentle boosting: learns faster than others
(Friedman, Hastie, Tibshhirani, 1998;
Lienahart, Kuranov, & Pisarevsky, 2003).



Multi-class Boosting

We use the exponential multi-class cost function

classes
C
J — E |:€_Z H(’U,C):|
=7
cost membership classifier
function Inclassc, output for
+1/-1 class c

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998



Weak learners are shared

At each boosting round, we add a perturbation or “weak learner”
which is shared across some classes:

H(’U?‘,j (_'.i) g ]{(’JU'?',:i (_'.i) -+ h.rnf}:, (’Ufg',:. (_'_i)

We add the weak classifier that provides the best reduction of
the exponential cost

J = i E {e_ZCH(U’C)} = i E [ezc (H(vi,c) + hm(vi,¢))
c=1

c=1

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998



Use Newton’s method to select
weak learners

Treat h. as a perturbation, and expand loss J to second order in h,

C
aro min J( H-/ BT T B —z"H(v.e)/_c / 2
arg min J(H+h,,) ~ arg min aY: 2% — hy,)
h m hm
/] |
cost classifier with | squared error

function perturbation o
reweighting

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998



Multi-class Boosting

Replacing the expectation with an empirical expecta-
tion over the training data, and defining weights w; =
e~ #iH(vie) for example 2 and class ¢, this reduces to
minimizing the weighted squared error:

T se Y%u 2 — hon (v, €))2.
‘ =i ‘ ‘

Weight squared weight  squared error
error over training
data

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998



Demo
Boosting for object detection



Summary

1) Object representation based on local features:




Summary

2) Search strategy:

Classifier
P(person [ vp) |~ MO Person

Local
features no car
VP
no cow

Agarwal & Roth, (02), Moghaddam, Pentland (97), Turk, Pentland (91),Vidal-Naquet, Ullman, (03)

Heisele, et al, (01), Agarwal & Roth, (02), Kremp, Geman, Amit (02), Dorko, Schmid, (03)

Fergus, Perona, Zisserman (03), Fei Fei, Fergus, Perona, (03), Schneiderman, Kanade (00), Lowe (99)
Etc.



SCENES



Try to find the face In this image




The search space Is huge

“Like finding needles in a haystack™

For each object:

- Need to search over locations
and scales

- Error prone (classifier must have
very low false positive rate)

- Slow (many patches to examine)

10,000 patches/object/image

»
»

1,000,000 images/day




| ocal features are not even sufficient




The multiple personalities of a blob




The multiple personalities of a blob




The multiple personalities of a blob




The multiple personalities of a blob




Not everything fits inside a rectangle

e e.g., detecting irregularly-shaped “stuff”
— Grass, trees, roads, building facades

e e.g., detecting non-rigid/ articulated/ “wiry”
things

— - people, chairs, desk lamps

ot

Source: MIT-CSAIL database of Objects and Scenes



Looking outside the box

Outside the object Inside the object
(contextual features) (intrinsic features)

&

14

i I |

I‘ O
ok / -_n oC

I P Object size

|
Global context Local context Global Parts Pixels
appearance

Kruppa & Shiele, (03), Fink & Perona (03)

Agarwal & Roth, (02), Moghaddam, Pentland (97), Turk, Pentland (91),Vidal-Naquet, Ullman, (03)
Carbonetto, Freitas, Barnard (03), Kumar, Hebert, (03)

Heisele, et al, (01), Agarwal & Roth, (02), Kremp, Geman, Amit (02), Dorko, Schmid, (03)
Fergus, Perona, Zisserman (03), Fei Fei, Fergus, Perona, (03), Schneiderman, Kanade (00), Lowe (99)
Strat & Fischler (91), Murphy, Torralba & Freeman (03) Etc.

He, Zemel, Carreira-Perpinan (04), Moore, Essa, Monson, Hayes (99)



What Is visual scene context?

* A specific scene category (a coffeemaker
IS usually in a kitchen)

* The structure of the scene background (a
chair is on the ground, not the celiling)

* A combination of objects of shapes
(TV+sofa+rug+bookshelf = living-room)

o Spatial relationships between shapes



Scene Context and Object Consistencies

 Biederman et al (82) proposed that five classes of relations exist
between an object and its scene background:

(1) Interposition (object interrupts their background)
* (2) Support (objects tend to rest on surfaces)

* (3) Probability (objects tend to be found in some scenes but not
others)

* (4) Position (given an object is probable in a scene, it often is
found in position but not others)

 (5) Familiar size (objects have a limited set of size relations with
other objects)



Object Consistencies

[ .
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Biederman et al (1982), DeGraef(1990).




Object Consistencies

Examples of inconsistencies

Biederman et al (1982), DeGraef(1990).




Rapid scene processing

e Conceptual information about a picture Is
available with a glimpse of > 100 ms (M. Potter)

e Scene processing can be quickly done without
much object information (Schyns & Oliva, 1994)



Object priming

Inconsistent object

Consistent object

»

Increasing contextual information

Torralba, Sinha, Oliva, VSS 2001



Object priming
Inconsistent objects

100%
. Consistent
N Fobj=21 ¢/i

Fctx=4 7

Fobj

Consistent objects

— I T
Inconsistent

"““ Fobj=21 ¢/i
-- . . ? 12 21 Fl:tx {cy\cles‘l"image’
Increasmg contextual information

Torralba, Sinha, Oliva, VSS 2001

Correct object recognition rate




Why Is context important?

« Changes the interpretation of an object (or its function)




Why Is context important?

* Reduces the search space

» Context features can be shared among many objects across locations
and scales: more efficient than local features.




Context models

The problem: how to represent context?

V. might have a very high dimensionality. There are as many ways
of breaking down the dimensionality of V. as there are possible
definitions of contextual representations.

How far can we go without object detectors?



Previous work on context

o Strat & Fischler (91)

Context defined using hand-written rules about relationships between objects

 Torralba & Sinha (01), Torralba (03)

Global context to predict objects.

* Fink & Perona (03)

Use boosting incorporating the output of multiple detectors to generate
contextual weak-classifiers.

e Murphy, Torralba & Freeman (03)

Use graphical models to represent the relation between global context and
objects.

o Carbonetto, Freitas & Barnard (04)

They extend the work on “words and images” by adding spatial consistency between
labels.

 He, Zemel & Carreira-Perpinan (04)

Use dense connectivity for incorporating spatial context using Multiscale conditional
random fields.



Previous work on context

o Strat & Fischler (91)

Context defined using hand-written rules about relationships between

obiects

# Class Context elements Operator

41 SKY ALWAYS ABOVE-HORIZON

42 SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT

43 SKY SKY-1S-CLEAR A TIME-IS-DAY UNTEXTURED

44 SKY SKY-IS-CLEAR A TIME-1S-DAY A RGB-IS-AVAILABLE | BLUE

45 SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT

46 SKY SKY-1S-OVERCAST A TIME-IS-DAY UNTEXTURED

47 SKY SKY-1S-OVERCAST A TIME-IS-DAY A WHITE

RGB-IS-AVAILABLE

48 SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED

49 SKY CAMERA-IS-HORIZONTAL NEAR-TOP

50 SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
CLIQUE-CONTAINS(complete-sky)

51 SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY

52 SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE

53 SKY RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky) SIMILAR-COLOR

61 GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED

62 GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM

63 GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONTAL-SURFACE

64 GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTAL-SURFACE

65 GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
CLIQUE-CONTAINS(complete-ground)

66 GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
CLIQUE-CONTAINS(geometric-horizon) A
= CLIQUE-CONTAINS(skyline)

67 GROUND TIME-IS-DAY DARK

71 FOLIAGE ALWAYS HIGHLY-TEXTURED

72 FOLIAGE ALWAYS HIGH-VEGETATIVE-TRANSPARENCY

73 FOLIAGE CAMERA-IS-HORIZONTAL NEAR-TOP

74 FOLIAGE RGB-1S-AVAILABLE GREEN

76 | RAISED-OBJECT | SPARSE-RANGE-IS-AVAILABLE SPARSE-HEIGHT-ABOVE-GROUND

77 | RAISED-OBJECT | DENSE-RANGE-IS-AVAILABLE DENSE-HEIGHT-ABOVE-GROUND

78 | RAISED-OBJECT | CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE

CLIQUE-CONTAINS(complete-sky)

Table 5: Type 11 Context Sets: Candidate Evaluation




Previous work on context

 Fink & Perona (03)

Use output of boosting from other objects at previous
Iterations as input into boosting for this iteration

A eye C. face E. mouth
feature feature feature
from from face from eye
raw detection detection
image , :
image image
B. face D. eve F. face
feature feature feature
from from eye Y from menth
raw detection detection
image .
s image image

Figure 5: A-E. Emerging features of eyes, mouths and faces (presented on windows
of raw 1mages for legibility). The windows’ scale 1s defined by the detected object
size and by the map mode (local or contextual). C. faces are detected using face
detection maps H ™, exploiting the fact that faces tend to be horizontally aligned.



Previous work on context

 Murphy, Torralba & Freeman (03)

Use global context to predict objects but there is no
modeling of spatial relationships between objects.

Keyboards




Previous work on context

o Carbonetto, de Freitas & Barnard (04)

* Enforce spatial consistency between labels using
MRF




Previous work on context

e He, Zemel & Carreira-Perpinan (04)

Use latent variables to induce long distance correlations
between labels in a Conditional Random Field (CRF)

Eegional
Features
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Input Image Label Field



How do we exploit relationships
between parts/ wholes
to overcome local ambiguity?



Use probabilistic graphical models!

Y




What is a graphical model?

« Nodes = random variables
— Shaded = observed
— Clear = hidden

H, » Arcs = (soft) constraints
« Bayes nets are a special case

e Goal of inference: state
estimation

Py(H;|v1:4)

e Guai U icaitny. paraiticel

estimation

arg max Py(h1:4|v1:4)



Including scene-context for object
detection

Class 2

II

V,c = Features for class c in patch p

Class 1




Some false alarms
occur in image regions
in which is impossible
for the target to be present
given the context.




Symptoms of local features only

Low probability of keyboard presence




The system does not care about the
scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

... even if there is one indeed.



Including scene-context for object
detection

Class 1

Class 2

&l

S =scene (category: street, office, corridor, ...)

E = Exists object c anywhere
in image?

O, . = Object ¢ in patch p?

V, . = Features for class c in patch p



Including scene-context for object
detection

S =scene (category: street, office, corridor, ...)

E = Exists object c anywhere
in image?

Class 2
O, . = Object ¢ in patch p?
V, . = Features for class c in patch p

V, = global image features

Class 1




Local and Global features

A set of local features describes image properties at one particular
location in the image:

v

Jet of local orientations and scales

A set of global features provides information about the global
Image structure without encoding specific objects

This feature likes images with vertical structures at the top part and
horizontal texture at the bottom part (this is a typical composition of an empty street)



Computing the global scene features

Steerable
pyramid
1 i-.'l':.::| ! g

FESL
il 0

Pipe image tugh steerable filter bank (here we use
6 orientations, 4 scales)

Compute magnitude of filter outputs
Downsample to 4 x 4 each scale/orientation
PCA to 80 dimensions

Oliva, Torralba. 1IJCV 2001



Global features

64 global features
The representation preserves:

Low resolution structure

Phase is only preserved for very low spatial frequencies (2 cycles/image)



Goal

 To build a system that knows where it is
e That recognizes the main objects in the scene
 That can work on new environments

» Robust to user



Our mobile rig, version 1

Kevin Murphy

Torralba, Murphy, Freeman, Rubin, ICCV 2003; Murphy, Torralba, Freeman, NIPS 2003



Our mobile rig, version 2

Torralba, Murphy, Freeman, Rubin, ICCV 2003; Murphy, Torralba, Freeman, NIPS 2003



Training for scene recognition

Scene categorization:

3 categories

Place identification:
Office 610

‘Draper’ Street

A e L. -




Scene classifier

Discriminative Generative
(boosting) (mixture of Gaussians)



Corridor recognition
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Office recognition
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Temporal context helps



Temporal context helps




Place and object recognition

P( 0y, O | Vi)

l '
. I
Objects mage sequence

Location




Place and object recognition

P( 0y O¢ | Vie) =P(0y G| Vig, VO @

P( 0| Oy s Vo) PG| Vi)

l

Location
Context features



Hidden Markov Model

P( 0y Q¢ | Vi) @

P( 0| Oy s Vi) PG| Vi)

Location J
Context features
We use a HMM to estimate the location recursively:

P(a;|vi) o p(vela) D P | awy) PO ey | Vies)

| ] |

Probability Observation Transition Previous

for each likelihood matrix estimation
location (encodes topology)



Hidden Markov Model

We use 17 annotated sequences for training

= i i
=) i *

Office 610 Corridor 6b Corridor 6¢ Office 617

 Hidden states = location (63 values)
» Observations = v©, (80 dimensions)

e Transition matrix encodes topology of
environment

 Observation model Is a mixture of
Gaussians centered on prototypes (100
views per place)



Temporal classifier

Discriminative Generative
(1D CRF) (HMM)

@ 9 @ @ Scene-type

Torralba, Murphy, Freeman, Rubin, ICCV 03



Place recognition demo
(0

t=94%3 truth = 400-fl6-corrdor3

corridor

/ \

Input image (120x160) Shows the category and the identity of
The place when the system is confident.
Runs at 4 fps on Matlab.



ldentification and categorization of known

Thistle corridor
Theresa office
200 side street

Draper street
200 out street
400 Short street
Draper plaza
400 plaza

400 Back street
Jason corridor
elevator 200/7

places

<
<«

» &
Ll |

T r r 1 1 1 1 1 17T

Building 400 Outdoor Al-lab

YWision Area 2
YWision Area |
kitchen floor 6
elevator 200/6
corrndor 6c
cornidor 6b
corrnidor 6a
office 400/628
office 400/627
office 400/625
office 400/611
office 400/610
elevator 400/1
elevator 400,11

open space -
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office
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indoor

—— Ground truth
«ea SysStem estimate

Specific location

~|Location category
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|dentification and categorization of new
places

Famihar

New environment environment

Thercesa office
200 sidc strcct
Drapcr strecct
200 out strcet
400 Short strcct
Drapcr plaza
400 plaza
400 Back strcct
Magic corridor
Kcvin corridor
Jason corridor
clcvator 200/9
clcvator 200/7
Admin cornidor
conference 200941 - - - - - - -
officc 200/936} --
officc 200/777
clcvator 400/1
msidc clevator 200
clcvator 200/1

kitchenf - - - - -
confcrence room
misc

in clcvator
opcn spacc
corridor

officc

lobby

plaza

strcct

outdoorf- - - - - - - - - - - e L O R A
indoor

0 500 1000 1500 frame



Predicting the presence of an object

®(E, S) can be estimated by counting
co-occurrences in labeled images

Office Street | Corridor
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“Cars are likely in streets, but not in offices or corridors”



Predicting the presence of an object

200 side street
Draper street
200 out street
400 Short street
Draper plaza
400 plaza

400 Back street
elevator 20007
Vision Area 2
Vision Area L
Icitchen floor 6

elevator 20006 L . © 0 10

corridor ¢

corridor 6b | .

corridor 6a

office 400/628 |- .
otfice 4000627 |- -

office 4000625 |- - | - |-

office 400¢6L 1

office 400/610

elevator 400/1

projector - -
Co,
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freezer -

coffee machine
water cooler
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| tree - -
bicycle - -

2000 2500 (frames)

fire hydrant

projector - - -
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freezer - - -

coffee machine g= - - -
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priner - - - -
filecabinet ;-

chair

screen
poster

At each place st
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person -

steps

consider all possible szt

building ¢ - :

car

objects for detection. ==

bicycle p- - -

fire hydrant

A

Place
recognition

Object
predictions

Ground
truth for
object presence



Combining scene Top-down predictions
with detectors bottom-up signal

We use a CRF

Class 1 Class 2

S =scene (category: street, office, corridor, ...)

E. = Exists object c anywhere
in image?

O, . = Object ¢ in patch p?

V, . = Features for class c in patch p

V, = global image features



Application of object detection for
Image retrieval

Results using the keyboard detector alone

LOW T o '_
probability B&E | |

High
probability

Low
probability

High R
probability §§




Application of object detection for
Image retrieval

Results using the car detector alone

Low
probabillty

ngh

Low

probability ' "

High S
probability g =




Application of object detection for
Image retrieval

Detecting the coffee machine:

Without context

With context [Pt




Global features can predict expected
locations/scales of objects before
running detectors

Keyboards Pedestrians

There is a relationship between the aspect of the objects in a scene, and the aspect
of the scene itself. For instance, the point of view of cars is correlated with the

orientation of the street. But also, the location of the ground in the scene is correlated
with the location of the objects in the scene.



Global scene features predicts location

S = scene (category: street, office, corridor, ...)

E = Exists object c anywhere
in image?

Class 2

O, . = Object ¢ in patch p?
V, . = Features for class c in patch p

@ = expected location of class ¢
° = global image features

Class 1




Global scene features predicts location

Class 1 Class 2

VARAY.

° @ X, = expected location of class c
G V, = global image features




Global scene features predicts location

Training set (cars)

1) We learn the mapping between image
global features and object location as
a regression problem:

X = 22 hy(Vg)

Minimize E[(X,. — X)]

We use boosting for regression.
h., are regression stumps.

(We do the regression for the
horizontal and vertical
Components, and for scale)



Global scene features predicts location

Training set (cars)

2) We fit a logistic function to compute the
probability of object presence in a patch p
given the expected location x:

PO, [X) =0 W' [1 [x;—x|[*])




Global scene features predicts location

Given a new scene, we can predict the most expected location of an object
based on the global features of the image

Results for predicting the
vertical location of cars
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Results for predicting the
horizontal location of cars
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Scenes are arranged

on horizontal layers.

We can predict the vertical
component (ground level)
but the horizontal component
Is poorly constrained

by the global scene.



Global scene features predicts location

Region of the image likely
to contain cars conditional on
the scene (global features: VQ)

Input Image

3. Logistic

\ / classification

1. Compute @ 2. Compute
global scene features e location regression




Full system

S = scene (category: street, office, corridor, ...)

E. = Exists object c anywhere
in image?

Class 1

O, . = Object ¢ in patch p?

@ V, . = Features for class c in patch p

P

@ M@ X. = expected location of class ¢

V, = global image features




The strength of context

Lets see how far can we get in object detection and localization without using
detectors at all.

E. = EXists object c anywhere
in image?

Class 1

O, = Object ¢ in patch p?

X. = expected location of class c

V, = global image features



The strength of context

No temporal integration. Every frame is processed independently from the previous one.



The two sources of information and
the final system

Integration of global and
local features

Local scene analysis Global scene analysis
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Learning joint object models



Multiclass object detection

 \We want to recognize many object classes with efficient algorithms:
(Torralba, Murphy, Freeman, CVPR 04)
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 \We want to use contextual relationships between objects
(Torralba, Murphy, Freeman, NIPS 04)




A more complete model of context

Torralba, Murphy, Freeman, NIPS 04



Image database

» ~2500 hand labeled images with
segmentations

» ~30 objects and stuff
» Indoor and outdoor

o Sets of Images are separated by
locations and camera (digital/webcam)
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There is a whole range of difficulties for the task of object detection:
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Detecting difficult objects

. _ Maybe
| OFFICE === ihere js

d MOuSe

Start recognizing the scene



Detecting difficult objects

Ry~
I i

Detect first simple objects (reliable detectors) that provide strong
contextual constraints to the target (screen -> keyboard -> mouse)



Segmenting difficult objects

Detect first simple objects (reliable detectors) that provide strong
contextual constraints to the target (screen -> keyboard -> mouse)



Learning local features
(First we need some Intrinsic object features)

Lﬂlﬂiﬁ <::> building

road
car
Pb«ﬂs

We maximize the probability of the true labels using Boosting.




Fragments for class-specific segmentation

Fragment Bank
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Source: Borenstein & Ullman, ECCV’02



Object local features

(Borenstein & Ullman, ECCV 02)
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Object local features

(Borenstein & Ullman, ECCV 02)
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Results with local features

We use Boosting to build a classifier:




Results with local features
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Results with local features
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AddINg correlations petween

objects
= @‘\
‘G
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We need to learn
 The structure of the graph

 The pairwise potentials



Previous work on joint object modeling

o Strat & Fischler (91)

Context defined using hand-written rules about relationships between objects

e Torralba & Sinha (01)

Global context to predict objects.

* Fink & Perona (03)

Use boosting incorporating the output of multiple detectors to generate
contextual weak-classifiers.

e Murphy, Torralba & Freeman (03)

Use graphical models to represent the relation between global context and
objects.

o Carbonetto, Freitas & Barnard (04)

They extend the work on “words and images” by adding spatial consistency between
labels.

 He, Zemel & Carreira-Perpinan (04)

Use dense connectivity for incorporating spatial context using Multiscale conditional
random fields.



Learning in conditional random
fields
 Parameters

— Lafferty, McCallum, Pereira (ICML 2001)

» Find global optimum using gradient methods plus exact inference
(forwards-backwards) in a chain

— Kumar & Herbert, NIPS 2003
» Use pseudo-likelihood in 2D CRF

— Carbonetto, de Freitas & Barnard (04)

» Use approximate inference (loopy BP) and pseudo-likelihood on
2D MRF

e Structure

— He, Zemel & Carreira-Perpinan (CVPR 04)
« Use contrastive divergence

— Torralba, Murphy, Freeman (NIPS 04)
» Use boosting



Graphical models for vision
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Sequentially learning the structure
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Seqguentially learning the structure

At each iteration of boosting

*\We pick a weak learner applied to the image
(local or global features)

*\We pick a weak learner applied to a subset of the label-beliefs at

the previous iteration. These subsets are chosen from a dictionary
of labeled graph fragments from the training set.
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Car detection

road—»car

buildini+car

ilding »buildi
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car »road




Screen/keyboard/mouse

F.\ b (mouse)
! % .

Iteration



Screen/keyboard/mouse
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Screen/keyboard/mouse
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Screen/keyboard/mouse
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Screen/keyboard/mouse
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Screen/keyboard/mouse
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Cascade

Geman et al, 98:; Viola & Jones, 01

Set to zero the beliefs of nodes with low probability of containing the
target.

Perform message passing only on undecided nodes

The detection of
the screen reduces
the search space
for the mouse
detector.
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Cascade
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Car detection

From intrinsic features

From contextual features

A car out of context is less of a car




Future work

e Learn relationships between more objects
(things get interesting beyond the 10 objects
bar)

Feature

sharing
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