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The goal

Bookshelf

Desk

Screen

Office scene



Why object detection is a hard problem

viewpoints

Need to detect Nclasses * Nviews * Nstyles, in clutter.
Lots of variability within classes, and across viewpoints.

Object classes

Styles, lighting conditions, etc, etc, etc…



Where is the field of computer vision?
There are efficient solutions for 
• Detecting few single object categories:

Lowe, 1999

• Detecting particular objects:
.

But the problem of multi-class and multi-view object 
detection in a scene with clutter is still largely unsolved.

• Recognizing objects in isolation

From Leibe & Schiele, 2003



The ingredients

• Object representations
• Scene representations

• Classifiers
• Graphical models

• Object features
• Scene features



OBJECTS



Object representations

Models
• Constellations of parts 
• Holistic representations

– Shape-appearance models
• Shapes, silohuetes
• 3D models



Object representations

Features
• Pixel intesities
• Patches
• SIFT 
• Basic geometric forms (Geons, quadrics)



Learning representations

• Generative models
• Discriminative models



Shape-appearance models

• Idea

• Features
– Pixel intensities

• Representation
– Subspace model of shape and appearance 

variations
– Generative model

AAM = T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter 



Shape-appearance models

AAM = T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter 
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Constelation models

• Idea

• Features
– Intensities, patches, SIFT features.

• Representation
– Parts base representation.

AAM = T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter 



Constelations of parts

Slide from Perona 2005



SIFT features



Invariant Local Features
• Image content is transformed into local feature 

coordinates that are invariant to translation, 
rotation, scale, and other imaging parameters

SIFT Features Slide from David Lowe



Build Scale-Space Pyramid
• All scales must be examined to identify scale-

invariant features
• An efficient function is to compute the 

Difference of Gaussian (DOG) pyramid (Burt & 
Adelson, 1983) Blur 

Res ample

Subtra ct

Blur 

Res ample

Subtra ct

Blur 

Resample

Subtract
Slide from David Lowe



Key point localization

Blur 

Res ample

Subtra ct

• Detect maxima and 
minima of difference-
of-Gaussian in scale 
space

Slide from David Lowe



Select dominant orientation

0 2π

• Create histogram of local 
gradient directions 
computed at selected 
scale

• Assign canonical 
orientation at peak of 
smoothed histogram

Slide from David Lowe



SIFT vector formation
• Thresholded image gradients are sampled over 

16x16 array of locations in scale space
• Create array of orientation histograms
• 8 orientations x 4x4 histogram array = 128 

dimensions

Slide from David Lowe



Invariant Local Features

Lowe, 1999

• Detecting particular objects:
.



Segmentation driven

• Idea
– Avoid scaning and reduce number of 

candidates

• Features
– Blobs and image regions

• Representation
– An image is an arrangement of regions 



Segmentation-recognition

Slide from Duygulu, 04 P. Duygulu, K. Barnard, N. de Freitas, D. Forsyth. ECCV 02



Discriminative approach

• Idea

• Features
– Pixel intensities, wavelets, patches

• Representation
– Any of the representations before 



• Graded Learning for Object Detection - Fleuret, Geman (1999) 
• Robust Real-time Object Detection - Viola, Jones (2001)

Cascade of classifiers

Features: stumps, inspired from haar wavelets

Cascade: classifiers of increasing complexity. Low miss rate.



Short introduction to Boosting



Why use boosting?

• Creates very accurate, very fast 
classifiers.

• Training is fast and easy to implement.
• Can handle high-dimensional data

(stumps perform feature selection).
• Robust to overfitting (implicitly 

maximizes margin).



Boosted decision trees
• “Best off-the-shelf classifier in the world”

– Leo Breiman, 1998
• 1 node tree = “stump”

• Can be used for feature selection.
• Pick best dimension d and threshold φ by 

exhaustive search.
• Pick best slope a and offset b using weighted 

least squares.



Additive models for classification

+1/-1 classification
classes

feature responses

hm(v,c) is a weak classifier (performs better than chance)

H (v,c) is the strong classifier obtained as a sum of weak classifiers



Example of weak classifier (stumps)

θ

a

b vf

hm (v)

A decision stump is a threshold on a single feature

Each decision stump has 4 parameters: {f, θ, a, b} 
f = template index (selected among a dictionary of 2000 templates)
θ = Threshold, 
a,b = average class value (-1, +1) at each side of the threshold



Flavors of boosting

• Different boosting algorithms use different loss
functions or minimization procedures 
(Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998).

• We base our approach on Gentle boosting: learns faster than others
(Friedman, Hastie, Tibshhirani, 1998;
Lienahart, Kuranov, & Pisarevsky, 2003).



Multi-class Boosting

We use the exponential multi-class cost function
classes

classifier 
output for 
class c

membership 
in class c,
+1/-1

cost 
function

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998



Weak learners are shared

At each boosting round, we add a perturbation or “weak learner”
which is shared across some classes:

We add the weak classifier that provides the best reduction of 
the exponential cost

( )

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998



Use Newton’s method to select 
weak learners

Treat hm as a perturbation, and expand loss J to second order in hm

classifier with 
perturbation

squared error

reweighting

cost 
function

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998



Multi-class Boosting

weight squared errorWeight squared 
error over training 
data

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998



Demo 
Boosting for object detection



Summary

1) Object representation based on local features:



Summary

2) Search strategy:

Local
features no car

Classifier
P( car | vp )

Vp

no cow
Classifier

P( cow | vp )

no person
Classifier

P(person | vp )

…

Agarwal & Roth, (02), Moghaddam, Pentland (97), Turk, Pentland (91),Vidal-Naquet, Ullman, (03)

Heisele, et al, (01), Agarwal & Roth, (02), Kremp, Geman, Amit (02), Dorko, Schmid, (03)
Fergus, Perona, Zisserman (03), Fei Fei, Fergus, Perona, (03), Schneiderman, Kanade (00), Lowe (99)
Etc.



SCENES



Try to find the face in this image



The search space is huge
“Like finding needles in a haystack”

For each object:

x

- Error prone (classifier must have 
very low false  positive rate)

- Slow (many patches to examine)

sca
le

1,000,000 images/day

10,000 patches/object/image

- Need to search over locations
and scales

y



Local features are not even sufficient



The multiple personalities of a blob



The multiple personalities of a blob



The multiple personalities of a blob



The multiple personalities of a blob



Not everything fits inside a rectangle

• e.g., detecting irregularly-shaped “stuff”
– Grass, trees, roads, building facades

• e.g., detecting non-rigid/ articulated/ “wiry”
things
– - people, chairs, desk lamps

Source: MIT-CSAIL database of Objects and Scenes



Looking outside the box

PartsGlobal 
appearance

Inside the object
(intrinsic features)

Outside the object
(contextual features)

Object size

PixelsGlobal context Local context

Kruppa & Shiele, (03), Fink & Perona (03)

Carbonetto, Freitas, Barnard (03), Kumar, Hebert, (03)

He, Zemel, Carreira-Perpinan (04), Moore, Essa, Monson, Hayes (99)

Strat & Fischler (91), Murphy, Torralba & Freeman (03)

Agarwal & Roth, (02), Moghaddam, Pentland (97), Turk, Pentland (91),Vidal-Naquet, Ullman, (03)

Heisele, et al, (01), Agarwal & Roth, (02), Kremp, Geman, Amit (02), Dorko, Schmid, (03)
Fergus, Perona, Zisserman (03), Fei Fei, Fergus, Perona, (03), Schneiderman, Kanade (00), Lowe (99)
Etc.



What is visual scene context?

• A specific scene category (a coffeemaker 
is usually in a kitchen)

• The structure of the scene background (a 
chair is on the ground, not the ceiling)

• A combination of objects of shapes 
(TV+sofa+rug+bookshelf = living-room)

• Spatial relationships between shapes



Scene Context and Object Consistencies
• Biederman et al (82) proposed that five classes of relations exist 

between an object and its scene background:
• (1) Interposition (object interrupts their background)
• (2) Support (objects tend to rest on surfaces)
• (3) Probability (objects tend to be found in some scenes but not 

others)
• (4) Position (given an object is probable in a scene, it often is 

found in position but not others)
• (5) Familiar size (objects have a limited set of size relations with 

other objects)



Object Consistencies

Biederman et al (1982), DeGraef(1990).



Object Consistencies

Examples of inconsistencies

Biederman et al (1982), DeGraef(1990).



Rapid scene processing

• Conceptual information about a picture is 
available with a glimpse of > 100 ms (M. Potter)

• Scene processing can be quickly done without 
much object information (Schyns & Oliva, 1994)



Object priming
Inconsistent object

Consistent object

Increasing contextual information

Torralba, Sinha, Oliva, VSS 2001



Object priming

Torralba, Sinha, Oliva, VSS 2001



Why is context important?
• Changes the interpretation of an object (or its function)

• Context defines what an unexpected event is 



Why is context important?
• Reduces the search space

• Context features can be shared among many objects across locations 
and scales: more efficient than local features.



Context models

VC

VL

The problem: how to represent context?

VC might have a very high dimensionality. There are as many ways 
of breaking down the dimensionality of VC as there are possible 
definitions of contextual representations.

How far can we go without object detectors?



Previous work on context
• Strat & Fischler (91) 
Context defined using hand-written rules about relationships between objects

• Torralba & Sinha (01), Torralba (03)
Global context to predict objects. 

• Fink & Perona (03)
Use boosting incorporating the output of multiple detectors to generate 

contextual weak-classifiers.

• Murphy, Torralba & Freeman (03)
Use graphical models to represent the relation between global context and 

objects.

• Carbonetto, Freitas & Barnard (04)
They extend the work on “words and images” by adding spatial consistency between 

labels.

• He, Zemel & Carreira-Perpinan (04)
Use dense connectivity for incorporating spatial context using Multiscale conditional 

random fields.



Previous work on context
• Strat & Fischler (91) 
Context defined using hand-written rules about relationships between 

objects



Previous work on context

• Fink & Perona (03)
Use output of boosting from other objects at previous 

iterations as input into boosting for this iteration



Previous work on context

• Murphy, Torralba & Freeman (03)
Use global context to predict objects but there is no 

modeling of spatial relationships between objects.

Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 1 Class 2
E1 E2

S

c2
maxVc1

maxV

X1 X2vg

Keyboards



Previous work on context

• Carbonetto, de Freitas & Barnard (04)
• Enforce spatial consistency between labels using 

MRF



Previous work on context

• He, Zemel & Carreira-Perpinan (04)
Use latent variables to induce long distance correlations 

between labels in a Conditional Random Field (CRF)



How do we exploit relationships 
between parts/ wholes

to overcome local ambiguity?



Use probabilistic graphical models!



What is a graphical model?
• Nodes = random variables

– Shaded = observed
– Clear = hidden

• Arcs = (soft) constraints
• Bayes nets are a special case

• Goal of inference: state 
estimation

• Goal of learning: parameter 
estimationV1

V4

V3 V’3

H1

H2
H4

H3



Including scene-context for object 
detection

Ec = Exists object c anywhere
in image?

Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 2Class 1

E1 E2

Op,c = Object c in patch p?

Yes No

Vp,c = Features for class c in patch p



Symptoms of local features only

Some false alarms
occur in image regions
in which is impossible
for the target to be present
given the context.



Symptoms of local features only
Low probability of keyboard presence

High probability of keyboard presence



The system does not care about the 
scene, but we do…

We know there is a keyboard present in this scene even if we cannot see it clearly.

We know there is no keyboard present in this scene

… even if there is one indeed.



Including scene-context for object 
detection

Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 1 Class 2
E1 E2

S
S = scene (category: street, office, corridor, …)

Ec = Exists object c anywhere
in image?

Op,c = Object c in patch p?

Vp,c = Features for class c in patch p



Including scene-context for object 
detection

Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 1 Class 2
E1 E2

vg

S

Ec = Exists object c anywhere
in image?

Op,c = Object c in patch p?

Vp,c = Features for class c in patch p

S = scene (category: street, office, corridor, …)

Vg = global image features



Local and Global features
A set of local features describes image properties at one particular
location in the image:

Jet of local orientations and scales

>

A set of global features provides information about the global
image structure without encoding specific objects

+

This feature likes images with vertical structures at the top part and 
horizontal texture at the bottom part (this is a typical composition of an empty street)



Computing the global scene features

• Pipe image through steerable filter bank (here we use   
6 orientations, 4 scales)

• Compute magnitude of filter outputs
• Downsample to 4 x 4 each scale/orientation
• PCA to 80 dimensions

| vt | PCA vG

Oliva, Torralba. IJCV 2001



Global features

The representation preserves:
Low resolution structure
Phase is only preserved for very low spatial frequencies (2 cycles/image) 

64 global features



Goal
• To build a system that knows where it is 

• That recognizes the main objects in the scene

• That can work on new environments

• Robust to user



Our mobile rig, version 1

Kevin Murphy
Torralba, Murphy, Freeman, Rubin, ICCV 2003; Murphy, Torralba, Freeman, NIPS 2003



Our mobile rig, version 2

Torralba, Murphy, Freeman, Rubin, ICCV 2003; Murphy, Torralba, Freeman, NIPS 2003



Training for scene recognition

office
Scene categorization:

street corridor

3 categories
Place identification:

‘Draper’ StreetOffice 610 Office 615

…
62 places



Scene classifier

vg

S

Discriminative
(boosting)

ug

S

Generative
(mixture of Gaussians)



Corridor recognition
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Office recognition
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Temporal context helps

= ?



Temporal context helps



Place and object recognition

p( ot, qt | v1:t )  

Objects
Location

Image sequence



Place and object recognition

p( ot, qt | v1:t ) = p( ot, qt | v1:t , vG
1:t)   α

p( ot | qt , v1:t ) P( qt | v1:t ) 
G

Location
Context features



Hidden Markov Model

p( ot, qt | v1:t )  α

p( ot | qt , v1:t ) P( qt | v1:t ) 
G

Location
Context features

P( qt | v1:t )  α p( vt | qt )      P(qt | q’t-1) P( q’t-1 | v1:t-1 ) Σ
q’

Probability
for each 
location

We use a HMM to estimate the location recursively:
G G G

Transition
matrix

(encodes topology)

Observation
likelihood

Previous
estimation



Hidden Markov Model
We use 17 annotated sequences for training

Office 610 Corridor 6b Corridor 6c Office 617

• Hidden states = location (63 values)
• Observations = vG

t (80 dimensions)
• Transition matrix encodes topology of 

environment
• Observation model is a mixture of 

Gaussians centered on prototypes (100 
views per place)



Temporal classifier

Discriminative
(1D CRF)

Generative
(HMM)

St

vt
g

StSt-1

ut
g

St-1

ut-1
g

RtRt-1

vt-1
g

RtRt-1
Room-name

Scene-type

Torralba, Murphy, Freeman, Rubin, ICCV 03



Place recognition demo

VC

st
ist-1

i

Input image (120x160) Shows the category and the identity of 
The place when the system is confident.
Runs at 4 fps on Matlab.



Specific location

Location category

Indoor/outdoor

Ground truth
System estimate

Identification and categorization of known 
places

Building 400 Outdoor AI-lab

Frame number



Identification and categorization of new 
places

Category

Identification

frame



Predicting the presence of an object

E

S

Φ(E, S) can be estimated by counting 
co-occurrences in labeled images

Office
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“Cars are likely in streets, but not in offices or corridors”



Predicting the presence of an object

Place
recognition

Object
predictions

Ground
truth for
object presence

At each place
it is not necessary to
consider all possible
objects for detection.

indoor outdoor



Combining scene Top-down predictions 
with detectors bottom-up signal

Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 1 Class 2
E1 E2

vg

S
S = scene (category: street, office, corridor, …)

We use a CRF

Ec = Exists object c anywhere
in image?

Op,c = Object c in patch p?

Vp,c = Features for class c in patch p

Vg = global image features



Application of object detection for 
image retrieval

Results using the keyboard detector alone

Low
probability

High
probability

Results using both the keyboard detector and the global scene features

Low
probability

High
probability



Application of object detection for 
image retrieval

Results using the car detector alone

Low
probability

High
probability

Results using both the car detector and the global scene features

Low
probability

High
probability



Application of object detection for 
image retrieval

Detecting the coffee machine:

Without context

With context



Global features can predict expected 
locations/scales of objects before 

running detectors

PedestriansKeyboards

There is a relationship between the aspect of the objects in a scene, and the aspect 
of the scene itself. For instance, the point of view of cars is correlated with the 
orientation of the street. But also, the location of the ground in the scene is correlated 
with the location of the objects in the scene.



Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 1 Class 2
E1 E2

S

Op,c = Object c in patch p?

Ec = Exists object c anywhere
in image?

Vp,c = Features for class c in patch p

S = scene (category: street, office, corridor, …)

Global scene features predicts location

X1 X2
Vg = global image features

Xc = expected location of class c

vg



Op1,c1 OpN,c1

. . .

Op1,c2 OpN,c2

. . .

vg

X1 X2

Class 1 Class 2

Op,c = Object c in patch p?

Vg = global image features

Xc = expected location of class c

Global scene features predicts location



vg
X

Vg ,1{ }X1

Vg ,2{ }X2

Vg ,3{ }X3

Vg ,4{ }X4

Training set (cars)

X = Σ hm(Vg)

Minimize E[(xtrue – x)2]

We use boosting for regression.
hm are regression stumps.

1) We learn the mapping between image
global features and object location as
a regression problem:

Global scene features predicts location

(We do the regression for the 
horizontal and vertical
Components, and for scale)

…



vg
X

Vg ,1{ }X1

Vg ,2{ }X2

Vg ,3{ }X3

Vg ,4{ }X4

Op,c OpN,c

. . .

x = Σ hm(Vg)

P(Op,c | x) = σ (wT [1  ||xp– x||2 ]) 

2) We fit a logistic function to compute the
probability of object presence in a patch p 
given the expected location x:

Training set (cars)

Global scene features predicts location

…



vg X

x = Σ hm(Vg)

Given a new scene, we can predict the most expected location of an object
based on the global features of the image

Global scene features predicts location

Results for predicting the 
vertical location of cars

Estimated Y

Tr
ue

 Y

Results for predicting the 
horizontal location of cars

Estimated X

Tr
ue

 X

Scenes are arranged
on horizontal layers.
We can predict the vertical 
component (ground level)
but the horizontal component 
is poorly constrained 
by the global scene.



Input Image

Region of the image likely 
to contain cars conditional on 
the scene (global features: Vg)

1. Compute 
global scene features

2. Compute 
location regression

3. Logistic 
classification 

Global scene features predicts location

Op1,c2 OpN,c2

. . .

vg X2



Full system

Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 1 Class 2
E1 E2

S
S = scene (category: street, office, corridor, …)

Ec = Exists object c anywhere
in image?

Op,c = Object c in patch p?

Vg = global image features

Vp,c = Features for class c in patch p

X1 X2
Xc = expected location of class c

vg



The strength of context
Lets see how far can we get in object detection and localization without using
detectors at all.

Op1,c1 OpN,c1. . . Op1,c2 OpN,c2. . .

Class 1 Class 2
E1 E2

S
S = scene

Op,c = Object c in patch p?

Ec = Exists object c anywhere
in image?

Vg = global image features

X1 X2
Xc = expected location of class c

vg



The strength of context

Op1,c2 OpN,c2

Scene

vg

Op1,c2 OpN,c2

Keyboard? Car?

X1 X2

No temporal integration. Every frame is processed independently from the previous one.



The two sources of information and 
the final system

Integration of global and
local features

Global scene analysisLocal scene analysis

Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 1 Class 2
E1 E2

vg

S

c2
maxVc2
maxVc1

maxVc1
maxV

X1 X2

Op1,c1 OpN,c1. . . Op1,c2 OpN,c2. . .

Class 1 Class 2
E1 E2

S

X1 X2
vg

Op1,c1

vp1,c1

OpN,c1

vpN,c1. . .

Op1,c2

vp1,c2

OpN,c2

vpN,c2. . .

Class 1 Class 2

E1 E2

c2
maxV c2
maxVc1

maxVc1
maxV



Context-based vision system for place 
and object recognition

Place
recognition

Scene
categorization

Object
detection



Learning joint object models



Multiclass object detection
• We want to recognize many object classes with efficient algorithms:

(Torralba, Murphy, Freeman, CVPR 04)

• We want to use contextual relationships between objects
(Torralba, Murphy, Freeman, NIPS 04)



A more complete model of context

VL
n

s1
1 s1

n

VL
1

…

street

s2
1 s2

n
…

VG

s3
1 s3

n
…

office
…

Torralba, Murphy, Freeman, NIPS 04



Image database

• ~2500 hand labeled images with 
segmentations

• ~30 objects and stuff

• Indoor and outdoor

• Sets of images are separated by 
locations and camera (digital/webcam)



Detecting difficult objects
There is a whole range of difficulties for the task of object detection:

Average 
percentage of
pixels occupied
by each object.



Detecting difficult objects

Maybe
there is 
a mouse

Office 

Start recognizing the scene



Detecting difficult objects

Detect first simple objects (reliable detectors) that provide strong
contextual constraints to the target (screen -> keyboard -> mouse)



Segmenting difficult objects

Detect first simple objects (reliable detectors) that provide strong
contextual constraints to the target (screen -> keyboard -> mouse)



Learning local features
(First we need some intrinsic object features)

VL
n

s1
1 s1

n

VL
1

…
s2

1 s2
n

…
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We maximize the probability of the true labels using Boosting.



Fragments for class-specific segmentation

Source: Borenstein & Ullman, ECCV’02



Object local features
(Borenstein & Ullman, ECCV 02)
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Object local features
(Borenstein & Ullman, ECCV 02)
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Results with local features
We use Boosting to build a classifier:



Results with local features

Screen



Results with local features

Car



Adding correlations between 
objects
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We need to learn

• The structure of the graph

• The pairwise potentials



Previous work on joint object modeling
• Strat & Fischler (91) 
Context defined using hand-written rules about relationships between objects

• Torralba & Sinha (01) 
Global context to predict objects. 

• Fink & Perona (03)
Use boosting incorporating the output of multiple detectors to generate 

contextual weak-classifiers.

• Murphy, Torralba & Freeman (03)
Use graphical models to represent the relation between global context and 

objects.
• Carbonetto, Freitas & Barnard (04)
They extend the work on “words and images” by adding spatial consistency between 

labels.

• He, Zemel & Carreira-Perpinan (04)
Use dense connectivity for incorporating spatial context using Multiscale conditional 

random fields.



Learning in conditional random 
fields

• Parameters
– Lafferty, McCallum, Pereira (ICML 2001)

• Find global optimum using gradient methods plus exact inference 
(forwards-backwards) in a chain

– Kumar & Herbert, NIPS 2003
• Use pseudo-likelihood in 2D CRF

– Carbonetto, de Freitas & Barnard (04) 
• Use approximate inference (loopy BP) and pseudo-likelihood on 

2D MRF

• Structure
– He, Zemel & Carreira-Perpinan (CVPR 04)

• Use contrastive divergence
– Torralba, Murphy, Freeman (NIPS 04)

• Use boosting 



Graphical models for vision

Densely connected graphs 
with low informative connections



Sequentially learning the structure

Final output

Iteration



Sequentially learning the structure
At each iteration of boosting

•We pick a weak learner applied to the image
(local or global features)

•We pick a weak learner applied to a subset of the label-beliefs at 
the previous iteration. These subsets are chosen from a dictionary 
of labeled graph fragments from the training set.



Car detection



Screen/keyboard/mouse

Iteration



Screen/keyboard/mouse

Iteration



Screen/keyboard/mouse

Iteration



Screen/keyboard/mouse

Iteration



Iteration

Screen/keyboard/mouse



Screen/keyboard/mouse



Cascade
Geman et al, 98; Viola & Jones, 01

Set to zero the beliefs of nodes with low probability of containing the 
target.

Perform message passing only on undecided nodes 

The detection of 
the screen reduces 
the search space 
for the mouse 
detector.



Cascade
Local

Context

Geman et al, 99;Viola and Jones 01



Cascade



Car detection
From intrinsic features

From contextual features

A car out of context is less of a car



Future work
• Learn relationships between more objects 

(things get interesting beyond the 10 objects 
bar)

Feature 
sharing

Context
Scene

Cascade
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