Context in vision

Antonio Torralba

Why object detection is a hard problem
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Need to detect Nclasses * Nviews * Nstyles, in clutte
Lots of variability within classes, and across yemts.
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Where is the field of computer vision”

There are efficient solutions for
« Detecting few single object categoriesg m |."I |
e} ﬁ

« Detecting particular objects:

Lowe, 1999

From Leibe & Schiele, 2003

But the problem of multi-class and multi-view olijec

W

detection in a scene with clutter is still largehsolved.




The ingredients OBJECTS

Obiject representations
 Scene representations

Classifiers
Graphical models

Object features
Scene features

Object representations Object representations
Models Features
 Constellations of parts * Pixel intesities
* Holistic representations « Patches
— Shape-appearance models e SIFT
* Shapes, silohuetes « Basic geometric forms (Geons, quadrics)

* 3D models




Learning representations

» Generative models
 Discriminative models

Shape-appearance models

* |dea

¢ Features
— Pixel intensities

* Representation

— Subspace model of shape and appearance
variations

— Generative model

AAM =T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter

Shape-appearance models

HEO v

« Statistical analysis
Shape. X= (X35, .. » X ¥o)T

—shape model: X = Xpean + Piby

—texture model: 0= Qen + Pgby

« Parameters b; control modes of variation

AAM =T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter

Shape-appearance models
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Constelation models

e |dea

* Features
— Intensities, patches, SIFT features.

* Representation
— Parts base representation.

AAM =T. F. Cootes, C.J. Taylor, G. J. Edwards
Morphable models = Blanz, T. Vetter

Constelations of parts

oUTH

Fischler & Elschlager, 1973 Perrett & Oram, 1993 Perona et al. '95

(Interest points)

0 Local appearance
Shape / deformation
A Belongie et al. 02 (Clutter)
Lowe 99, Moreels 04 Correspondence

Slide from Perona 2005

SIFT features

Invariant Local Features

* Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters

SIFT Features Slide from David Lowe




Build Scale-Space Pyramid

¢ All scales must be examined to identify scale-
invariant features

« An efficient function is to compute the
Difference of Gaussian (DOG) pyramid (Burt &
Adelson, 1983)
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Slide from David Lowe

Key point localization
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Slide from David Lowe

Select dominant orientation

» Create histogram of local
gradient directions
computed at selected
scale

 Assign canonical
orientation at peak of
smoothed histogram
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o
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Slide from David Lowe

SIFT vector formation

« Thresholded image gradients are sampled over
16x16 array of locations in scale space

« Create array of orientation histograms
« 8 orientations x 4x4 histogram array = 128
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Invariant Local Features Segmentation driven
* ldea
— Avoid scaning and reduce number of
« Detecting particular objects: candidates
Lowe, 1999
¢ Features
— Blobs and image regions
* Representation
— An image is an arrangement of regions
Segmentation-recognition Discriminative approach
Data : * |dea
! TIGERCAT WATERGRASS « Features
Words are associated with the images — Pixel intensities, wavelets, patches
But correspondences between image regions and words are unknown
‘ B Y o mam » Representation
* W — Any of the representations before
“sun sea sky” “sun sea sky”
Slide from Duygulu, 04 P. Duygulu, K. Barnard, N. de Freitas, D. Forsyth. ECCV 02




Cascade of classifiers

« Graded Learning for Object Detection - Fleuret, Geman (1999)
« Robust Real-time Object Detection - Viola, Jones (2001)

Cascade : classifiers of increasing complexity. Low miss rate.

All Sub-windows

Sl
i

Short introduction to Boosting

Why use boosting?

» Creates very accurate, very fast
classifiers.

* Training is fast and easy to implement.

e Can handle high-dimensional data
(stumps perform feature selection).

* Robust to overfitting (implicitly
maximizes margin).

Boosted decision trees

« “Best off-the-shelf classifier in the world”
— Leo Breiman, 1998

« 1 node tree = “stump”
f(@;0 = (a,b,d,$)) = alzg > ¢] +d

« Can be used for feature selection.

¢ Pick best dimension d and threshold @by
exhaustive search.

¢ Pick best slope a and offset b using weighted
least squares.




Additive models for classification

M
H(v,c) = Z T (v, €)

=il classes

+1/-1 classification feature responses

hy,(v,c) is a weak classifier (performs better thaarate)

H (v,c) is the strong classifier obtained as a sfimezk classifiers

Example of weak classifier (stumps)

_’| :; zlf: :\ﬁ:\Fucc
0

Strength of feature response
a

hy, (V) ,7
b— 16 vf

A decision stump is a threshold on a single feg

Each decision stump has 4 parameter$,{8, b}

f = template index (selected among a dictionarQfi0 templates)
06 =Threshold,

a,b = average class value (-1, +1) at each sitieechreshold

ture

Flavors of boosting

« Different boosting algorithms use different loss
functions or minimization procedures
(Freund & Shapire, 1995; Friedman, Hastie, Tibsrtjr1998).

* We base our approach on Gentle boosting: leasterfthan others
(Friedman, Hastie, Tibshhirani, 1998;
Lienahart, Kuranov, & Pisarevsky, 2003).

Multi-class Boosting

We use the exponential multi-class cost function

classes
@
J=YE [e*zCH«u,c)}
520
cost membership classifier
function Inclassc, output for
+1/-1 class c

Freund & Shgpire, 1995; Friedman, Hastie, Tibshhirani,




Weak learners are shared

At each boosting round, we add a perturbation ardkearner”
which is shared across some classes:

H(vi,c) := H(vi, ¢) + ham(vi, c)

We add the weak classifier that provides the kehiction of
the exponential cost

C

= (ZE [(;z' H(Ir.(:)] — ZE [ef:" (H(vi,0) +hm(z:7‘(:))}

c=1 c=1

Use Newton’s method to select
weak learners

Treat hy, as a perturbation, and expand loss J to second iortig
C

argmin JJ(H+h,,) ~ arg minz E {c‘*_;' H(vc) (2 — hm )2}

im

tm
/ 1 T
cost/ classifier with ‘ squared error

function perturbation o
reweighting

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 998 Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani,
Multi-class Boosting Demo
Boosting for object detection
Replacing the expectation with an empirical expecta-
tion over the training data, and defining weights w; =
e~#H(vie) for example 7 and class ¢, this reduces to
minimizing the weighted squared error:
¢ N
\ c -~ ~ 2
Jyse = Z Z w; (:r( IR hm(l‘w (")) :
] c=1i=1 I ]
Weight squared weight  squared error
error over training
data
Freund &Shgpire, 1995; Friedman, Hastie, Tibshhirani, 998




Summary

1) Object representation basedlacal features:

I Egi
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Summary

2) Search strategy:

K Pentiand (91):¥dabet, Ulman, (03)
'an, AR)( Dorko, Schmid, (03)
na, (08)iGerman, Kanade (00), Lowe (99)

SCENES

Try to find the face in this image

10



The search space is huge
“Like finding needles in a haystack”

For each object:

- Need to search over locations
and scales

- Error prone (classifier must have]
very low false positive rate)

- Slow (many patches to examine

10,000 patches/object/image

1,000,000 images/day

Local features are not even sufficie

The multiple personalities of a blob

The multiple personalities of a blob

11



The multiple personalities of a blob

The multiple personalities of a blob

Not everything fits inside a rectangle

* e.g., detecting irregularly-shaped “stuff”
— Grass, trees, roads, building facades

¢ e.g., detecting non-rigid/ articulated/ “wiry”
things
— - people, chairs, desk lamps

Source: MIT-CSAIL database of Objects and Scenes

Looking outside the box

. Outside the object Inside the object
(contextual features)  (intrinsic features)

Object size

}
Global context Local context Global Parts Pixels

appearance

Kuppa & Shieke, (03), Fink &
Carbonetto, Fretas, Bamard

2(03)

Kumar, Hebert, (03)

(04), Moore, Essa, Monson, Hagps (9
Strat & Fischier (91), Murphy, Torralba & Freeman (03)

Pentand (91):Mdaet, Ulman, (03)
n, AB@), Dorko, Schmid, (03)
‘. (0BpiGerman, Kanade (00), Lowe (99)




What is visual scene context?

* A specific scene category (a coffeemaker
is usually in a kitchen)

The structure of the scene background (a
chair is on the ground, not the ceiling)

» A combination of objects of shapes
(TV+sofa+rug+bookshelf = living-room)

Spatial relationships between shapes

Scene Context and Object Consistencies

Biederman et al (82) proposed that five classes of relations exist
between an object and its scene background:

(1) Interposition  (object interrupts their background)

(2) Support (objects tend to rest on surfaces)

(3) Probability (objects tend to be found in some scenes but not
others)

(4) Position (given an object is probable in a scene, it often is
found in position but not others)

(5) Familiar size (objects have a limited set of size relations with
other objects)

Object Consistencies

Biederman et al (1982), DeGraef(1990).

Object Consistencies

Biederman et al (1982), DeGraef(1990).

Examples of inconsistencies

13



Rapid scene processing

» Conceptual information about a picture is
available with a glimpse of > 100 ms (M. Potter)

» Scene processing can be quickly done without
much object information (Schyns & Oliva, 1994)

Object priming

Inconsistent object

Consistent object - .

Increasing contextual information

Torralba, Sinha, Oliva, VSS 200}

Object priming

Inconsistent objects

100%
Consistent

Fobj=21 ¢/i

Consistent objects

N e e e |

Correct object recognition rate

Inconsistent
Fobj=21 ¢/i

o%

4 7 2 21 Ferx (eyclesiimage)

Increasing contextual information

Torralba, Sinha, Oliva, VSS 200}

Why is context important?

« Changes the interpretation of an object (or itecfion)

14



Why is context important? Context models

» Reduces the search space

The problem: how to represent context?

. . V¢ might have a very high dimensionality. There arenasy ways
+ Context features can be shared among many oljess locations of breaking down the dimensionality of.\és there are possible
and scales: more efficient than local features. definitions of contextual representations.

5 @, ==
-

- How far can we go without object detectors?
R R e

* Strat & Fischler (91) o v « Strat & Fischler (91)
Context defined using hanfi-wrmen rules about relationships between objects Context defined using hand-written rules about relationships between
 Torralba & Sinha (01), Torralba (03) Ohiec
Global context to predict objects. R e
 Fink & Perona (03) 5 o=
Use boosting incorporating the output of multiple detectors to generate - [
contextual weak-classifiers. ESI- Aoove swvune
e Murphy, Torralba & Freeman (03) 5
Use graphical models to represent the relation between global context and , ggg;;g1;@;:::;;:2,,‘,%“‘ <unrace
objects. & Ghouo SO s OO SURACE
° CarbonettO’ Freltas & Barnard (04) o6 GROUND BELOW-GEOME TRIC-HORIZON
They extend the work on ‘words and images” by adding spatial consistency between Fi-—Forisge—{mn FIGHLY-TEXTURED,
labels. T Roiiact | CameraisHomzonTa A Ton T TRAEPARENEY
 He, Zemel & Carreira-Perpinan (04) i e e e et
Use dense connectivity for incorporating spatial context using Multiscale conditional o
random fields. Table 5: Type IT Context Sets: Candidate Evaluation




Previous work on context

* Fink & Perona (03)

Use output of boosting from other objects at previous
iterations as input into boosting for this iteration

C. face m E. mouth
feature feature
from fuce from eye
detection detection|
image image

B. face D.eye s
feature feature feature
from from eye from mouth

detection

detection €
image

image

"“:' {I

Figure 5: A-E. Emerging features of eyes, mouths and faces (presented on windows
of raw images for legibility). The windows’ scale is defined by the detected object
size and by the map mode (local or contextual). C. faces are detected using face
detection maps H %, exploiting the fact that faces tend to be horizontally aligned.

Previous work on context

* Murphy, Torralba & Freeman (03)

Use global context to predict objects but there is no
modeling of spatial relationships between objects.

Keyboards

Previous work on context

e Carbonetto, de Freitas & Barnard (04)

« Enforce spatial consistency between labels using
MRF

Y

Previous work on context

¢ He, Zemel & Carreira-Perpinan (04)

Use latent variables to induce long distance correlations
between labels in a Conditional Random Field (CRF)

Tnput Image Label Field RBM

16



How do we exploit relationships
between parts/ wholes
to overcome local ambiguity?

Use probabilistic graphical models!

What is a graphical model?

« Nodes = random variables
— Shaded = observed
— Clear = hidden
* Arcs = (soft) constraints
« Bayes nets are a special case

* Goal of inference: state
estimation

Py(H;|vq-
- oLolH|v1:4),
estimation

arg max Py(h1:4|v1:4)

Including scene-context for object
detection

Class 1 S >\ Class 2 /< 2

E. = Exists object c anywhere
in image?

V¢ = Features for class c in patch p

17



Symptoms of local features only

Some false alarms
occur in image regions

in which is impossible

for the target to be present
given the context.

Symptoms of local features only

Low probability of keyboard presence

s
ﬁlﬂdk‘-ﬁ

ngh probability of keyboard presence

The system does nhot care about the
scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

... even if there is one indeed.

Including scene-context for object
detection

S = scene (category: street, office, corridor, ...)

E, = Exists object ¢ anywhere
in image?

0,1c = Object ¢ in patch p?
Vp.C = Features for class c in patch p

18



Including scene-context for object
detection

S = scene (category: street, office, corridor, ...)

E. = Exists object c anywhere
in image?

Class 1 Class 2
@ @ O, = Object ¢ in patch p?
@ e @ V¢ = Features for class c in patch p

@ V, = global image features

Local and Global features

A set oflocal featureglescribes image properties at one particular
location in the image:

MosS

Jet of local orientations and scales

A set of global featurgsrovides information about the global
image structure without encoding specific objects

o
e

-
-

““G
N

GQ
This feature likes images with vertical structuaethe top part and
horizontal texture at the bottom part (this ispi¢gl composition of an empty streel

Computing the global scene featur¢

Steerable
pyramid

Vel

* Pipe image through steerable filter bank (hereuses
6 orientations, 4 scales)

« Compute magnitude of filter outputs

« Downsample to 4 x 4 each scale/orientation

¢ PCA to 80 dimensions

Oliva, Torralba. IJCV 200

Global features

B 7
64 global features
The representation preserves:

Low resolution structure

Phase is only preserved for very low spatial frequencies (2 cycles/image)

19



Goal

« To build a system that knows where it is
« That recognizes the main objects in the scene
» That can work on new environments

* Robust to user

Our mobile rig, version 1

Kevin Murphy

Torralba, Murphy, Freeman, Rubin, ICCV 2003; Murphy, Torralba, Freen&s 2003

Our mobile rig, version 2

Torralba, Murphy, Freeman, Rubin, ICCV 2003; Murphy, Torralba, FraghieS 2003

Training for scene recognition

Scene categorization:
office street corridor

3 categories
Place identification:

Office 610 Office 615 ‘Draper’ Street

= = ==
= =]
= o 2 =5

Bl =%

20



Scene classifier

Discriminative Generative
(boosting) (mixture of Gaussians)

misses

Corridor recognition

Targets=400, Distractors=2806

bogsting
T

E
!
=i

c

S

h=4

= 51

g f
E 1U§>
o sob—

Number false alarms
% 100 200 300 400

Office recognition

in
3
o -
4
igh

41
OStt

@ 5
gg ﬁ g j Number false alarms|
[ 1

200 400

600

Temporal context helps

21



Temporal context helps

H

Place and object recognition

P(Q, & | Vi)
'

. |
Objects mage sequence

Location

Place and object recognition
P(Q &l Vie) =p(Q G| Virs Vo) @
p(ala, Vi) P(q]viy)

Location
Context features

Hidden Markov Model

P(Q. G| viy) @
p(ala,vi)P(alviy)

Location \
Context features
We use a HMM to estimate the location recursively:
P(alvir) o p(vla) Z P@l vy P(dea | Vira)

R

Probability Observation Transition Previous
for each likelihood matrix estimation
location (encodes topology)

22



Hidden Markov Model
We use 17 annotated sequences for training

= | O

Office 610 Corridor 6b

Corridor 6¢ Office 617

Hidden states = location (63 values)
Observations = v©, (80 dimensions)

 Transition matrix encodes topology of
environment

Observation model is a mixture of
Gaussians centered on prototypes (100
views per place)

Temporal classifier

Discriminative Generative
(1D CRF) (HMM)
@ e @ o Room-name
» 'e > ‘e senoype

Torralba, Murphy, Freeman, Rubin, ICCV 03

Place recognition demo
E)—

=953, truth = 400-fI6-corridor3

corridor

Input image (120x160) Shows the category and the identity of
The place when the system is confident.

Runs at 4 fps on Matlab.

Identification and categorization of known

places

Building 400 Outdoor Al-lab

—— Ground truth

ﬂ «sa System estimate
—

Qv ~|Specific location

“rc, v,y |Location category

-~ Indoor/outdool

-

—

0 500 1000 1500 200 2500 3000 Frame number

23



Identification and categorization of new
places

Familiar

New environment environment
==

Theresa office| -
200 side street]- - < -

N w
g
TTT T T T 1T

Admin corridor |
onference 2001941
office 200936
office 200/777)
clevator 400/1
inside clevator 200)
clevator 200/1

TTTT

kitchenf™
conferenc room|
‘misc}

open spacel
corridor
offi
Tobby|
pleza
siree]
outdoor | - -
——
500 000

Predicting the presence of an object

®(E, S) can be estimated by counting
co-occurrences in labeled images

Office Street Corridor

car
pedestrian

“Cars are likely in streets, but not in officescorridors”

Predicting the presence of an object

Place
D PQuvE i recognition

L L [ L
[ T T T—

al Tk

m o - - Object
3 ?#' i o e e L predictions

Teeee i ke wmm cmnoaen
-angee

LR ORTIORE FR bk b d eyt e
.
M ground truth

At each place # VT 173 B g SR M Ground

it is not necessary to & Ve tiw TN i vmme i truth for
consider all possible - w object presence
objects for detection. L T emd e e e

indoor outdoor

Combining scene Top-down predictions
with detectors bottom-up signal

S = scene (category: street, office, corridor, ...)

We use a CRF

E. = Exists object c anywhere
in image?

@ @ Oy, = Object c in patch p?
@ s @ V¢ = Features for class c in patch p

( \ ) V, = global image features

24



Application of object detection for
image retrieval

Results using the keyboard detector alone

n] | L
probablllty i}
i)
Rl! Eﬂ%—
probability b
| g

Results using both the keyboard detector and the gl obal scene features

" b T il ]
Low BT :_ 8 "‘.‘_ﬂg
High

probablllty

‘.—‘ ‘

Application of object detection for
image retrieval

Results using the car detector alone

Low
probablllty
High 'u.— ﬁ == m
i Lé}-i“?.ii e WH <

probabllny =
Results using both the car detector and the global

scene features

s N [ o RO 7 R
bability E_ .
probability = . 3 ASES
High Eerms B e
probability B e T _—

Application of object detection for
image retrieval

Detecting the coffee machine:

Without context .
=

With context

Global features can predict expected
locations/scales of objects before
running detectors

Keyboards

Pedestrians

There is a relationship between the aspect of the objects in a scene, and the aspect
of the scene itself. For instance, the point of view of cars is correlated with the
orientation of the street. But also, the location of the ground in the scene is correlated
with the location of the objects in the scene.

25



Global scene features predicts locat

Class 1

S = scene (category: street, office, corridor, ...)

E. = Exists object c anywhere
in image?

@ @ @ O, = Object ¢ in patch p?

@ V¢ = Features for class c in patch p

ﬂé X, = expected location of class ¢
v, .
9 V, = global image features

on

Global scene features predicts locat

Class 1 Class 2

° ° X, = expected location of class ¢
e Vg = global image features

Global scene features predicts locat

Training set (cars)

— {vi x1}

— (V2 X2}

1) We learn the mapping between image
global features and object location as
a regression problem:

X =2 h (Vg)

Minimize E[(X,y,, — X)?]

We use boosting for regression.
h,, are regression stumps.

(We do the regression for the
horizontal and vertical
Components, and for scale)

on

Global scene features predicts locat

Training set (cars)
2) We fit a logistic function to compute the
probability of object presence in a patch p

— 1 . )
(Vg Xt} given the expected location x:

P

Opc 1) =0 W1 [Ix—XIF])

— (V2. X2}

d— (V3 x3)

R
x= 2 h,(vVg)

b=

on

on
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Given a new scene, we can predict the most expected location of an object
based on the global features of the image

x=2 h,(vVg)

Results for predicting the
vertical location of cars

o

Results for predicting the
horizontal location of cars

,m eses w0 w o, i Scenes are arranged

> . .)}ﬁy‘i’ x Ptee < ‘g¢y  On horizontal layers.

S ’;‘;‘ﬁ" e PRSPy '-'.5,‘.,;" We can predict the vertical

FoalaEg . E o« ‘:\'-:"“'."" **  component (ground level)
05 Cotet ;:. oo but the horizontal component

is poorly constrained
by the global scene.

0 % @ ® W

Estimated Y Estimated X

Global scene features predicts locat

on | Global scene features predicts locat

Input Image

1. Compute
global scene features

Region of the image likely
to contain cars conditional on
the scene (global features: Vg)

3. Logistic

/ classification
@ 2. Compute
0 location regression

Full system

S = scene (category: street, office, corridor, ...)

E, = Exists object ¢ anywhere
in image?

O, = Object ¢ in patch p?

V. = Features for class c in patch p
X, = expected location of class ¢

z (v )/db
9 V, = global image features

detectors at all.

S = scene

The strength of context

Lets see how far can we get in object detection and localization without using

E. = Exists object c anywhere
inimage?

Oy, = Object ¢ in patch p?

X, = expected location of class ¢

( Vg ) f V, = global image features

on

27



The strength of context

Keyboard?

No temporal integration. Every frame is processed independently from the previous one.

The two sources of information a
the final system

Local scene analysis Global scene analysis Integration of global and
local features

e

|
&l

G @

Context-based vision system for place
and object recognition

t=1, P(placeCat=corridor)=0.19, P(place=733)=0.03

<Object
detection

«Scene
categorizatiof

<« Place -
recognition

Learning joint object models

28



Multiclass object detection

« We want to recognize many object classes witltiefit algorithms:
(Torralba, Murphy, Freeman, CVPR 04)

Car Sereen Mowse Keyboad Can

=[]~ 1

* We want to use contextual relationships betwegectd
(Torralba, Murphy, Freeman, NIPS 04)

A more complete model of context

-~ -
Esﬁeet office w

e

1 =

Torralba, Murphy, Freeman, NIPS p4

Image database
o

« ~2500 hand labeled images with
segmentations

« ~30 objects and stuff
« Indoor and outdoor

« Sets of images are separated by
locations and camera (digital/webcam

Detecting difficult objects

There is a whole range of difficulties for the tadlobject detection:

100
Average
percentage of e
pixels occupied 60
by each object.

walksideRegion
keyboard
mouse
parkingMeter
trafficlight

29



Detecting difficult objects

) Maybe
| ——p Office == ihere s

a mouse

AL

Start recognizing the scene

Detecting difficult objects

Detect first simple objects (reliable detectorsit throvide strong

contextual constraints to the target (screen -b&asd -> mouse)

Segmenting difficult objects

Detect first simple objects (reliable detectors)ibrovide strong
contextual constraints to the target (screen -b&asd -> mouse)

Learning local features
(First we need some intrinsic object features)

@ - (@) buiding
= @ @ road
Fawis %D (@) car

@ m Pixels

We maximize the probability of the true labels gdBoosting.

30



Fragments for class-specific segmentation

Fragment Bank

Input images Segmentation

Source: Borenstein & Ullman, ECCV’'02

Object local features

(Borenstein & Ullman, ECCV 02)

Normalized Threshold Convolve with
correlation with segmentation

Convolve with
oriented filter

an object patch fragment
npassEn
EEEE0 i =
[Amy . [« ]
L [my [w) (]

S e me ] S BT
Hd W0 =5
=L =C M
a0 Bl Bl

Object local features

(Borenstein & Ulliman, ECCV 02)

Normalized \
correlation with segmentation
an object patch fragment

Ill] HE D Nd

Convolve with
oriented filter

e
BEEED

::;th;egé;%rg plerD 55 gg
H W] WR
=k =0 MO
a0 Bl Nl

Threshold Convolve with

Results with local features

We use Boosting to build a classifier:

S

5 5
E :
ol =
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Results with local features

SIEL == = L e
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Results with local features
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Car

Adding correfations between
objects

e ﬁ
—
=3

We need to learn
* The structure of the graph

* The pairwise potentials

Previous work on joint object modeli

e Strat & Fischler (91)

Context defined using hand-written rules about relationships between objects
« Torralba & Sinha (01)

Global context to predict objects.

¢ Fink & Perona (03)

Use boosting incorporating the output of multiple detectors to generate
contextual weak-classifiers.
¢ Murphy, Torralba & Freeman (03)

Use graphical models to represent the relation between global context and
objects.

e Carbonetto, Freitas & Barnard (04)

They extend the work on “‘words and images” by adding spatial consistency between
labels.

¢ He, Zemel & Carreira-Perpinan (04)

Use dense connectivity for incorporating spatial context using Multiscale conditional
random fields.

—

g
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Learning in conditional random
fields
* Parameters

— Lafferty, McCallum, Pereira (ICML 2001)

« Find global optimum using gradient methods plus exact inference
(forwards-backwards) in a chain

— Kumar & Herbert, NIPS 2003
« Use pseudo-likelihood in 2D CRF
— Carbonetto, de Freitas & Barnard (04)

« Use approximate inference (loopy BP) and pseudo-likelihood on
2D MRF

» Structure
— He, Zemel & Carreira-Perpinan (CVPR 04)
* Use contrastive divergence
— Torralba, Murphy, Freeman (NIPS 04)
* Use boosting

Graphical models for vision
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Densely connected graphs
with low informative connections
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Sequentially learning the structure
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Final output

[E ]

Sequentially learning the structure

At each iteration of boosting

*We pick a weak learner applied to the image
(local or global features)

*We pick a weak learner applied to a subset ofahel-beliefs at

the previous iteration. These subsets are chosendrdictionary
of labeled graph fragments from the training set.

Bl =l =EE
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Car detection

Road

-.;\_' Car

Screen/keyboard/mouse
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Screen/keyboard/mouse
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S Output labeling
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Ground truth

Cascade

Geman et al, 98; Viola & Jones, 01
Set to zero the beliefs of nodes with low probapdif containing the
target.

Perform message passing only on undecided nodes

The detection of

i E [ the screen reduces

the search space
for the mouse
detector.
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Cascade Cascade

Screen Keyboard Mouse
100% ™ T T T T T T ™ T T T T T T T
Local
5 [ Building detection
s%r - Contexi
Round Round Round
R T T T T R TR TR

i-.[sE mﬁl
- ——

=40

y | -

Detection rate ~ Size of search space

0.5 10 0.5 10 0.5
False alarm rate False alarm rate False alarm rate

Geman et al, 99;Viola and Jones|01

Car detection Future work
From intrinsic features « Learn relationships between more objects
(things get interesting beyond the 10 objects
bar)
ea

Feature
sharlng
Context

From contextual features

A car out of context is less of a car 5

Cascade




