Context in vision Antonio Torralba

The ingredients

- Object representations
- Scene representations
- Classifiers
- · Graphical models
- · Object features
- Scene features

OBJECTS

Object representations

Models

- · Constellations of parts
- Holistic representations
 - Shape-appearance models
- · Shapes, silohuetes
- 3D models

Object representations

Features

- · Pixel intesities
- Patches
- SIFT
- Basic geometric forms (Geons, quadrics)

Learning representations

- · Generative models
- Discriminative models

Shape-appearance models

- Idea
- Features
 - Pixel intensities
- Representation
 - Subspace model of shape and appearance variations
 - Generative model

AAM = T. F. Cootes, C.J. Taylor, G. J. Edwards Morphable models = Blanz, T. Vetter

Constelation models

- Idea
- Features
 - Intensities, patches, SIFT features.
- Representation
 - Parts base representation.

AAM = T. F. Cootes, C.J. Taylor, G. J. Edwards Morphable models = Blanz, T. Vetter

SIFT features

Segmentation driven

- Idea
 - Avoid scaning and reduce number of candidates
- Features
 - Blobs and image regions
- Representation
 - An image is an arrangement of regions

Discriminative approach

- Idea
- Features
 - Pixel intensities, wavelets, patches
- Representation
 - Any of the representations before

Cascade of classifiers • Graded Learning for Object Detection - Fleuret, Geman (1999) • Robust Real-time Object Detection - Viola, Jones (2001) Cascade: classifiers of increasing complexity. Low miss rate. Al Sub-windows Features: stumps, inspired from haar wavelets

Short introduction to Boosting

Why use boosting?

- Creates very accurate, very fast classifiers.
- Training is fast and easy to implement.
- Can handle high-dimensional data (stumps perform feature selection).
- Robust to overfitting (implicitly maximizes margin).

Boosted decision trees

- "Best off-the-shelf classifier in the world"
 Leo Breiman, 1998
- 1 node tree = "stump"

$$f(x; \theta = (a, b, d, \phi)) = a[x_d > \phi] + d$$

- · Can be used for feature selection.
- Pick best dimension *d* and threshold φ by exhaustive search.
- Pick best slope *a* and offset *b* using weighted least squares.

Additive models for classification

$$H(v,c) = \sum_{m=1}^{M} h_m(v,c)$$
 the classes of the feature responses

 $h_m(v,c)$ is a weak classifier (performs better than chance)

H (v,c) is the strong classifier obtained as a sum of weak classifiers

Example of weak classifier (stumps)

A decision stump is a threshold on a single feature

Each decision stump has 4 parameters: $\{f,\theta,a,b\}$

f = template index (selected among a dictionary of 2000 templates)

 θ = Threshold,

 $a,b = average \ class \ value \ (-1, +1)$ at each side of the threshold

Flavors of boosting

- Different boosting algorithms use different loss functions or minimization procedures (Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998).
- We base our approach on Gentle boosting: learns faster than others (Friedman, Hastie, Tibshhirani, 1998; Lienahart, Kuranov, & Pisarevsky, 2003).

Multi-class Boosting

We use the exponential multi-class cost function

$$J = \sum_{c=1}^{\text{classes}} E \left[e^{-z^c H(v,c)} \right]$$
 cost membership classifier function in class c, output for class c

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998

Weak learners are shared

At each boosting round, we add a perturbation or "weak learner" which is shared across some classes:

$$H(v_i, c) := H(v_i, c) + h_m(v_i, c)$$

We add the weak classifier that provides the best reduction of the exponential cost

$$J = \sum_{c=1}^{C} E\left[e^{-z^{c}H(v,c)}\right] = \sum_{c=1}^{C} E\left[e^{-z^{c}\left(H(v_{i},c) + h_{m}(v_{i},c)\right)}\right]$$

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998

Use Newton's method to select weak learners

Treat h_m as a perturbation, and expand loss J to second order in h_m

$$\underset{h_m}{\arg\min} J(H+h_m) \simeq \underset{h_m}{\arg\min} \sum_{c=1}^C E\left[e^{-z^c H(v,c)}(z^c-h_m)^2\right]$$
 cost classifier with function perturbation reweighting

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1995

Multi-class Boosting

Replacing the expectation with an empirical expectation over the training data, and defining weights $w_i^c = e^{-z_i^c H(v_i,c)}$ for example i and class c, this reduces to minimizing the weighted squared error:

$$J_{wse} = \sum_{c=1}^{C} \sum_{i=1}^{N} w_i^c (z_i^c - h_m(v_i, c))^2.$$

Weight squared error over training data

weight squared erro

Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 199

Demo Boosting for object detection

What is visual scene context?

- A specific scene category (a coffeemaker is usually in a kitchen)
- The structure of the scene background (a chair is on the ground, not the ceiling)
- A combination of objects of shapes (TV+sofa+rug+bookshelf = living-room)
- Spatial relationships between shapes

Scene Context and Object Consistencies

- Biederman et al (82) proposed that five classes of relations exist between an object and its scene background:
- (1) Interposition (object interrupts their background)
- (2) Support (objects tend to rest on surfaces)
- (3) Probability (objects tend to be found in some scenes but not others)
- (4) Position (given an object is probable in a scene, it often is found in position but not others)
- (5) Familiar size (objects have a limited set of size relations with other objects)

Rapid scene processing

- Conceptual information about a picture is available with a glimpse of > 100 ms (M. Potter)
- Scene processing can be quickly done without much object information (Schyns & Oliva, 1994)

Context models

The problem: how to represent context?

 $\boldsymbol{V}_{\boldsymbol{C}}$ might have a very high dimensionality. There are as many ways of breaking down the dimensionality of $\boldsymbol{V}_{\boldsymbol{C}}$ as there are possible definitions of contextual representations.

How far can we go without object detectors?

Previous work on context

• Strat & Fischler (91)

- Torralba & Sinha (01), Torralba (03) Global context to predict objects
- Fink & Perona (03)

Use boosting incorporating the output of multiple detectors to generate contextual weak-classifiers.

• Murphy, Torralba & Freeman (03)

Use graphical models to represent the relation between global context and objects.

• Carbonetto, Freitas & Barnard (04)

They extend the work on "words and images" by adding spatial consistency between labels.

• He, Zemel & Carreira-Perpinan (04)

Use dense connectivity for incorporating spatial context using Multiscale conditional random fields.

Previous work on context

• Strat & Fischler (91)

Context defined using hand-written rules about relationships between

÷	Class	Context elements	Operator
41	SKY	ALWAYS	ABOVE-HORIZON
42	SKY	SKY-IS-CLEAR A TIME-IS-DAY	BRIGHT
43	SKY	SKY-IS-CLEAR A TIME-IS-DAY	UNTEXTURED
44	SKY	SKY-IS-CLEAR A TIME-IS-DAY A RGB-IS-AVAILABLE	BLUE
45	SKY	SKY-IS-OVERCAST A TIME-IS-DAY	BRIGHT
46	SKY	SKY-IS-OVERCAST A TIME-IS-DAY	UNTEXTURED
47	SKY	SKY-IS-OVERCAST A TIME-IS-DAY A RGB-IS-AVAILABLE	WHITE
48	SKY	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGE-IS-UNDEFINED
49	SKY	CAMERA-IS-HORIZONTAL	NEAR-TOP
50	SKY	CAMERA-IS-HORIZONTAL A CLIQUE-CONTAINS(complete-sky)	ABOVE-SKYLINE
51	SKY	CLIQUE-CONTAINS(sky)	SIMILAR-INTENSITY
52	SKY	CLIQUE-CONTAINS(sky)	SIMILAR-TEXTURE
53	SKY	RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky)	SIMILAR-COLOR
61	GROUND	CAMERA-IS-HORIZONTAL	HORIZONTALLY-STRIATED
62	GROUND	CAMERA-IS-HORIZONTAL	NEAR-BOTTOM
63	GROUND	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGES-FORM-HORIZONTAL-SURFAC
64	GROUND	DENSE-RANGE-IS-AVAILABLE	DENSE-RANGES-FORM-HORIZONTAL-SURFACE
65	GROUND	CAMERA-IS-HORIZONTAL A CLIQUE-CONTAINS(complete-ground)	BELOW-SKYLINE
66	GROUND	CAMERA-IS-HORIZONTAL A CLIQUE-CONTAINS(geometric-horizon) A CLIQUE-CONTAINS(skyline)	BELOW-GEOMETRIC-HORIZON
67	GROUND	TIME-IS-DAY	DARK
71	FOLIAGE	ALWAYS	HIGHLY-TEXTURED
72	FOLIAGE	ALWAYS	HIGH-VEGETATIVE-TRANSPARENCY
73	FOLIAGE	CAMERA-IS-HORIZONTAL	NEAR-TOP
74	FOLIAGE	RGB-IS-AVAILABLE	GREEN
76	RAISED-OBJECT	SPARSE-RANGE-IS-AVAILABLE	SPARSE-HEIGHT-ABOVE-GROUND
77	RAISED-OBJECT	DENSE-RANGE-IS-AVAILABLE	DENSE-HEIGHT-ABOVE-GROUND
78	RAISED-OBJECT	CAMERA-IS-HORIZONTAL A CLIQUE-CONTAINS(complete-sky)	ABOVE-SKYLINE

Table 5: Type II Context Sets: Candidate Evaluation

How do we exploit relationships between parts/ wholes to overcome local ambiguity?

Goal

- To build a system that knows where it is
- That recognizes the main objects in the scene
- That can work on new environments
- Robust to user

Place and object recognition $p(|o_t, q_t||v_{1:t}) = p(|o_t, q_t||v_{1:t}, v^G_{1:t}) | |\alpha|$ $p(|o_t||q_t, v_{1:t}) | P(|q_t||v^\alpha_{1:t}) | |\alpha|$ | Location | Context features

Learning joint object models

Previous work on joint object modeling

- Strat & Fischler (91)
- Context defined using hand-written rules about relationships between objects
- Torralba & Sinha (01) Global context to predict objects.
- Fink & Perona (03)

Use boosting incorporating the output of multiple detectors to generate contextual weak-classifiers.

• Murphy, Torralba & Freeman (03)

Use graphical models to represent the relation between global context and objects.

Carbonetto, Freitas & Barnard (04)

They extend the work on "words and images" by adding spatial consistency between labels.

• He, Zemel & Carreira-Perpinan (04)

Use dense connectivity for incorporating spatial context using Multiscale conditional random fields.

Learning in conditional random fields

- Parameters
 - Lafferty, McCallum, Pereira (ICML 2001)
 - Find global optimum using gradient methods plus exact inference (forwards-backwards) in a chain
 - Kumar & Herbert, NIPS 2003
 - Use pseudo-likelihood in 2D CRF
 - Carbonetto, de Freitas & Barnard (04)
 - Use approximate inference (loopy BP) and pseudo-likelihood on 2D MRF
- Structure
 - He, Zemel & Carreira-Perpinan (CVPR 04)
 - Use contrastive divergence
 Torralba, Murphy, Freeman (NIPS 04)
 - Use boosting

Sequentially learning the structure At each iteration of boosting •We pick a weak learner applied to the image (local or global features) •We pick a weak learner applied to a subset of the label-beliefs at the previous iteration. These subsets are chosen from a dictionary of labeled graph fragments from the training set.

