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Non-linear filtering example



Median filter

Replace each pixel by the median over N
pixels (5 pixels, for these examples).
Generalizes to “rank order” filters.

In:

111} I‘IIIIIII
H_l

5-pixel
neighborhood

In: |
1]

Out:

Out:

Spike
noise IS
removed

Monotonic
edges
remain
unchanged



Degraded image




Radius 1 median filter

Because the filter is non-linear, it has the opportunity to
remove the scratch noise without blurring edges.



Radius 2 median filter




Comparison with linear blur of the amount
needed to remove the scratches




CCD color sampling



Color sensing, 3 approaches

e Scan 3 times (temporal multiplexing)

 Use 3 detectors (3-ccd camera, and color

film)

» Use offset color samples (spatial
multiplexing)




Typical errors in temporal
multiplexing approach
Color offset fringes




Typical errors In spatial
multiplexing approach.
Color fringes.



CCD color filter pattern

detector




The cause of color moire

detector

Fine black and white detail in image
mis-interpreted as color information.



Black and white edge falling on
color CCD detector

Black and white image (edge) /




Color sampling artifacts

Interpolated pixel colors,

for grey edge falling on colored
detectors (linear interpolation).
The edge is aliased (undersampled)
In the samples of any one color.
That aliasing manifests itself in the
spatial domain as an incorrect
estimate of the precise position of
the edge. That disagreement about
the position of the edge results in a
color fringe artifact.

A sharp luminance
edge.

The response of independently
interpolated color bands to an edge.

The mis-estimated edge yields
color fringe artifacts.



Typical color moire patterns

Blow-up of

«  electronic camera
Image. Notice spurious
colors in the regions

of fine detail in the
plants.




Color sampling artifacts
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Human Photoreceptors

(A)

ricls

COmEsS

(C)

3.4 THE SPATIAL MOSAIC OF THE HUMAN

CONES. Cross sections of the human retina at the

level of the inner segments showing (A) cones in

the fovea, and (B) cones in the periphery. Note the

size difference (scale bar = 10 ym), and that, as the

separation between cones grows, the rod receptors fill

in the spaces. (C) Cone density plotted as a function

of distance from the center of the fovea for seven

0.1 02 03 04 05  pyman retinas; cone density decreases with distance
Eccentricity (mm) from the fovea. Source: Curcio et al., 1990,

Cones/mm? (=1000)

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)
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1)

2)
3)
4)

Median Filter Interpolation

Perform first interpolation on isolated
color channels.

Compute color difference signals.
Median filter the color difference signal.
Reconstruct the 3-color image.



Two-color sampling of BW edge

Sampled data

Linear interpolation
O |

Color difference signal ‘ ‘




R-G, after linear interpolation




R — G, median filtered (5x5)
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References on color interpolation

« Brainard
e Shree nayar.



Image texture



Texture

o Key Issue: representing texture
— Texture based matching
* little is known
— Texture segmentation
» key issue: representing texture
— Texture synthesis
» useful; also gives some insight into quality of representation

— Shape from texture
» cover superficially



The Goal of Texture Synthesis

mput |mage

True |nf|n|te) texture generated Image

. Given a finite sample of some texture, the
goal is to synthesize other samples from that

same texture
— The sample needs to be "large enough*



The Goal of Texture Analysis

Input Image

ol ANALYSIS “Same”or
i - . H“different”

generated image

True (infinite) texture

Compare textures and decide if they’re made of the
same “stuff”.



Pre-attentive texture
discrimination



Pre-attentive texture

discrimination
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Pre-attentive texture
discrimination

Same or different textures?



Pre-attentive texture
discrimination



Pre-attentive texture

discrimination
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Pre-attentive texture
discrimination

Same or different textures?



Julesz

o Textons: analyze the texture in terms of
statistical relationships between
fundamental texture elements, called
“textons’”.

It generally required a human to look at
the texture In order to decide what those
fundamental units were...




Influential paper:

Early vision and texture perception

James R. Bergen* & Edward H. Adelson*#*

* S5RI1 David Sarnofl Research Center, Princeton,
New Jersey 08540, USA
#* Media Lab and Department of Brain and Cognitive Science,
Massachusetts Institute of Technology, Cambridge,
Massachuseus 02139, USA



Fig. 1 Top row, Textures
consisting of Xs within a
texture composed of Ls.
The micropatterns are
placed at random orienta-
tions on a randomly per-
turbed lattice. a, The bars
of the Xs have the same
length as the bars of the
Ls. b, The bars of the Ls
have been lengthened by
25%. and the intensity
adjusted for the same
mean  luminance.  Dis-
criminabitity is enhanced.
¢, The bars of the Ls
have been shortened by
25%. and the intensity
adjusted for the same
mean  luminance.  Dis-
criminabitity is impaired.
Bottom row: the responses
of a size-tuned mechan-
1sm d, response 0 image
a: e, response 1o image b;
i response Lo image .

Bergen and Adelson, Nature 1988
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Learn: use lots of filters, multi-ori&scale.

Malik and Perona

) e

W49 =~

Malik J, Perona P. Preattentive texture

discrimination with early vision
mechanisms. J OPT SOC AM A 7: (5) 923-

932 MAY 1990




Representing textures

e Textures are made up
of quite stylised
subelements, repeated

 What filters?

— experience suggests
spots and oriented bars

In meaningful ways at a variety of different
* Representation: scales
— find the subelements, — details probably don't
and represent their matter
statistics « What statistics?
e But what are the — within reason, the more
subelements, and how the merrier.
do we find them? — At least, mean and

_ recall normalized standard deviation

correlation — better, various

— find subelements by conditional histograms.

applying filters, looking at
the magnitude of the






.O Squared responses  Spatially blurred

vertical filter

Threshold squared,
blurred responses,
then categorize

_ _ texture based on
horizontal filter those two bits












Pyramid-Based Texture Analysis/Synthesis

David J. Heeger"
Stanford University

James R. Bergen!

SRI David Sarnoff Research Center

==

°
°

° >e |-

Sy

SIGGRAPH 1994



Show block diagram of heeger
bergen

 And demonstrate it working with matlab
code. Ask ted for example.



Learn: use filter marginal statistics.

Bergen and Heeger

Figure 2: (Lelt) Input digitized sample lexiure: burled mappa wood. (Middle) Input noise. {Right) Guipul synthetic texture
that matches the appearance of the digitized sample. Note that the synthesized texturs iz larger than the digitized sample;
our approach allows generation ol as much texture as desired. In addition. the synihetic lexiures e seamlessly.



Matlab examples
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Figure 3: In each pair leflt image is original and night image is synthetic: siucco, indescent fibbon, green marble, panda fur,
slag stone, figured yew wood.



Bergen and Heeger failures

Figure 9: More failures: hay and marble.




De Bonet (and Viola)

SIGGRAPH 1997

Multiresolution Sampling Procedure
for Analysis and Synthesis
of Texture Images
Jeremy S. De Bonet
Learning & Vision Group

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

EMAIL: jsd@ai.mit.edu
HOMEPAGE: http://www.ai.mit.edu/__jsd



Learn: use filter conditional statistics across scale.

DeBonet
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Figure §: The distribution from which pixels in the synthesis pyra- Figure 9: An input texture is decomposed to form an analysis pyra-
mid are sampled 1s conditioned on the “parent™ structure of tk_mse mid, from which a new synthesis pyramid is sampled, conditioned
pixels. Each element of the parent structure contains a vector of the on local features within the pyramids. A filter bank of local texture

feature measurements at that location and scale. measures, based on psychophysical models, are used as features.



DeBonet
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Portilla and Simoncell

e Parametric representation.
 About 1000 numbers to describe a texture.
* Ok results; maybe as good as DeBonet.



Portilla and Simoncelli

a Synthesized Texture Example: yellow-peppers256 - Microsoft Internet EXplorer
¥ T Ll b
’ Q‘* ' q,. [* w‘ ok ' 14’
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3 Synthesized Texture Example: windnwsPZSE - Microsoft Internet Explorer




Zhu, Wu, & Mumford, 1998

* Principled approach.
o Synthesis quality not great, but ok.



Zhu, Wu, & Mumford
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 Cheetah Synthetic



IEEE Internaticnal Conference on Computer Vision, Corfu, Greece, September 1999

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.S.A.
{efros,leungt } @cs.berkeley.edu

X




Efros and Leung




ILIE

Figure 2. Results: given a sample image (left), the algorithm synthesized four new images with nel'?'l'lburhtmd windows of
width 5, 11, 15, and 23 pixels respectively. Notice how perceptually intuitively the window size corresponds to the degree of
randomness in the resulting textures. Input images are: (a) synthetic rings, (b) Brodatz texture D11, (c¢) brick wall




What we’ve learned from the
previous texture synthesis
methods

From Adelson and Bergen:

examine filter outputs
From Perona and Malik:

use multi-scale, multi-orientation filters.
From Heeger and Bergen:

use marginal statistics (histograms) of filter
responses.

From DeBonet:

use conditional filter responses across scale.



What we learned from Efros and
Leung regarding texture synthesis
Don’t need conditional filter responses
across scale

Don’'t need marginal statistics of filter
responses.

Don’'t need multi-scale, multi-orientation
filters.

Don’t need filters.



Efros & Leung 99

e The algorithm
— Very simple
— Surprisingly good results
— Synthesis Is easier than analysis!
— ...but very slow

e Optimizations and Improvements
— [Wel & Levoy,’00] (based on [Popat & Picard,’93])
— [Harrison,’01]
— [Ashikhmin,’01]




Efros & Leung '99 extended

non-parametric
sampling

Input image

Synthesizing a block

* Observation: neighbor pixels are highly correlated
ldea: unit of synthesis = block

e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once

e Not the same as multi-scale!



Image Quilting

e |dea:

— let’s combine random block placement of
Chaos Mosaic with spatial constraints of Efros &
Leung

* Related Work (concurrent):

— Real-time patch-based sampling [Liang et.al.
'01]
— Image Analogies [Hertzmann et.al. '01]



block

Input texture

B1 | B2 B1 | | | B2 B1 | | B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut




Minimal error boundary

overlapping blocks vertical boundary

i

-

|

overlap error min. error boundary



Our Philosophy

 The “Corrupt Professor’s Algorithm?”:

— Plagiarize as much of the source image as you
can

— Then try to cover up the evidence

 Rationale:

— Texture blocks are by definition correct samples
of texture so problem only connecting them
together



Algorithm

— Pick size of block and size of overlap
— Synthesize blocks in raster order

— Search input texture for block that satisfies
overlap constraints (above and left)

e Easy to optimize using NN search [Liang et.al., '01]

— Paste new block into resulting texture

e Use dynamic programming to compute minimal error
boundary cut
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Failures
(Chernobyl
Harvest)




Texture Transfer

e Take the texture from one
object and “paint” it onto
another object

— This requires separating
texture and shape

— That's HARD, but we can
cheat

— Assume we can capture shape
by boundary and rough

shadin _ :
Then, justgadd another constraint when sampling:

Similarity to underlying image at that spot
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sSource g - Target
texture . Image
Source Target
correspondence ~correspondence
Image Image







Wei & Levoy



| Xu Guo & Shum
B T T T TR

Wei & Levoy



Homage to
Shannon!
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Summary of image quilting

* Quilt together patches of input image
— randomly (texture synthesis)
— constrained (texture transfer)
e Image Quilting
— No filters, no multi-scale, no one-pixel-at-a-time!
— fast and very simple
— Results are not bad
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