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Today Pyramids
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Reading

* Related to today’s lecture:

— Adelson article on pyramid representations,
posted on web site.

— Farid paper posted on web site.



Image pyramids

o Steerable pyramid



Steerable pyramids

e Good:

— Oriented subbands
— Non-aliased subbands
— Steerable filters

e Bad:

— Overcomplete

— Have one high frequency residual subband, required in
order to form a circular region of analysis in frequency
from a square region of support in frequency.



Oriented pyramids

 Laplacian pyramid Is orientation
Independent

» Apply an oriented filter to determine
orientations at each layer

— by clever filter design, we can simplify
synthesis

— this represents image information at a particular
scale and orientation



First component of
layer 1

Layer |

Layer 2

Laver 3 Layer 3

Laplacian Pyramid Oriented Pyramid



Laplacian Pyramid | Dyadic QMF/Wavelet | Steerable Pyramid
self-inverting (tight frame) || no yes yes
overcompleteness 4/3 1 4k /3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice [9] | yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

Simoncelli and Freeman, ICIP 1995


http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf
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My
But we need to get rid
of the corner regions
before starting the
recursive circular
filtering

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with & = 4. Frequency axes range from
—m to w. The basis functions are related by
translations, dilations and rofations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

Simoncelli and Freeman, ICIP 1995


http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf
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Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE



o Summary of pyramid representations



Image pyramlds

Progressively blurred and
subsampled versions of the
Image. Adds scale invariance
to fixed-size algorithms.

Gaussian

Shows the information added in
Gaussian pyramid at each
spatial scale. Useful for noise
reduction & coding.

Laplacian

, ¥ Bandpassed representation, complete, but with
Wavelet/QMF o aliasing and some non-oriented subbands.
Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture
and feature analysis.

Steerable pyram



Linear image transformations

 In analyzing images, it’s often useful to
make a change of basis.

transformed image
F = Jf —— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform



Schematic pictures of each
matrix transform

e Shown for 1-d images

e The matrices for 2-d iImages are the same
Idea, but more complicated, to account for
vertical, as well as horizontal, neighbor

relationships.




Fourier
transform

Fourier transform

*
Fourier bases pixel domain
are global: Image
each transform
coefficient

depends on all
pixel locations.



C;a;/trl:l?rl\a:g - pixel image

Overcomplete representation.
Low-pass filters, sampled
appropriately for their blur.



Laplacian
pyramid

Laplacian pyramid

pixel image

Overcomplete representation.
Transformed pixels represent
bandpassed image information.



Wavelet
pyramid

Ortho-normal
transform (like
Fourier transform),
but with localized
basis functions.

Wavelet (QMF) transform

pixel image



Steerable
pyramid

I
Z

Multiple
orientations at
— one scale
Multiple

orientations at
the next scale

the next scale...

‘

N

= Steerable pyramid

pixel image

Over-complete
representation,
but non-aliased
subbands.



Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html
—lcv—

Laboratory for Computational Vision
| _Home | People |Research |Publications| Software |

Publicly Available Software Packages

» Texture Analysis/Synthesis - Matlab code is available for analyzing and
synthesizing visual textures. README | Contents | Changelog | Source
code (LUNIX/PC, gzip'ed tar file)

« EPWIC - Embedded Progressive Wavelet Image Coder. C source code
available.

— « matlabPyrTools - Matlab source code for multi-scale image processing.
Includes tools for building and manipulating Laplacian pyramids,
OMFAMVavelets, and steerable pyramids. Data structures are compatible with
the Matlab wavelet toolbox, but the convolution code (in C) is faster and has
many boundary-handling options. README, Contents, Modification list,
UNIX/PC source or Macintosh source.

— « The Steerable Pyramid, an (approximately) translation- and rotation-invariant
multi-scale image decomposition. MatLab (see above) and C
implementations are available.

» Computational Models of cortical neurons. Macintosh program available.

« EPIC - Efficient Pyramid (Wavelet) Image Coder. C source code available.

« OBVIUS [Object-Based Vision & Image Understanding System]:
README / Changelog / Doc {225k} / Source Code (2.25M).

» CL-SHELL [Gnu Emacs <-> Common Lisp Interface]:
README / Change Log / Source Code (119k).




Why use these representations?

 Handle real-world size variations with a
constant-size vision algorithm.

 Remove noise

e Analyze texture

* Recognize objects
 Label image features



An application of image pyramids:
noise removal



Image statistics (or, mathematically,
how can you tell image from noise?)
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Pixel representation
Image histogram
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bandpass filtered image

Elrrl [ 14 1]



bandpassed representation
Image histogram
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Pixel domain noise image and
histogram
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Bandpass domain noise image
and histogram




Noise-corrupted full-freg and bandpass images
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Bayes theorem

P(x, y) = P(xly) P(y)
SO

P(X]y) P(y) = P(y|x) P(x)
and

P(X]y) = F}(y\x) P(x) / PT(Y)

gl IR T
function P '

What you observe Prior probability



Bayesian MAP estimator for clean bandpass

coefficient values
et X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

v 10°

By Bayes theorem
P(Xly) =k P(y[x) P(x) |

Sl | P(y¥
P(y[x) it

P(xly) | P(xly)
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Bayesian MAP estimator

et X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

4

¥ 10
By Bayes theorem .
B L
P(Xly) = kP(y[x) P(x) . y
P(X I
% 5| P(ylx)
P(ylx) i

P(xly)
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Bayesian MAP estimator

et X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.
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MAP estimate, X , as function of
observed coefficient value, y

60 7 5
X

40 7
20 7

“ y

=20

=40

-60

60 -0 0 30 60
Figure 2: Bayesian estimator (symmetrized) for
the signal and nolse histograms shown n figure 1.
superimposed on the plot 1s a straight line indicat-
mg the identity function.

Simoncelli and Adelson, Noise Removal via
Bayesian Wavelet Coring


http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf

Noise removal results

(b)

(d)

Figure 4; Noise reduction example. (a) Original image (cropped). (b) Image contaminated with additive Gaussian
white noise (SNR = 9.00dB). (c) Image restored using (semi-blind) Wiener filter (SNR = 11.88dB). (d) Image restored

using (semi-blind) Bayesian estimator (SNR = 13.82dB).  gjmoncelli and Adelson, Noise Removal via
Bayesian Wavelet Coring


http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf

Insert hany farid slides



Non-linear filtering example



In:

1] I‘IIIIIII
H_l

5-pixel
neighborhood

In: |
1]

Median filter

Replace each pixel by the median over N
pixels (5 pixels, for these examples).
Generalizes to “rank order” filters.

Out:

Out:

Spike
noise IS
removed

Monotonic
edges
remain
unchanged



Degraded Image




Radius 1 median filter




Radius 2 median filter




CCD color sampling



Color sensing, 3 approaches

e Scan 3 times (temporal multiplexing)

e Use 3 detectors (3-ccd camera, and color
film)

o Use offset color samples (spatial
multiplexing)



Typical errors In temporal
multiplexing approach

 Color offset fringes




Typical errors In spatial
multiplexing approach.

» Color fringes.



CCD color filter pattern

detector




The cause of color moire

detector

Fine black and white detail in image
mis-interpreted as color information.



Black and white edge falling on
color CCD detector

Black and white image (edge) /




Color sampling artifact

Interpolated pixel colors,
for grey edge falling on colored
detectors (linear interpolation).




Typical color moire patterns

Blow-up of

«  electronic camera
Image. Notice spurious
colors in the regions

of fine detail in the
plants.




Color sampling artifacts




Human Photoreceptors

(A) (B)

ricls

OIS

(€)

3.4 THE SPATIAL MOSAIC OF THE HUMAN

COMNES. Cross sections of the human retina at the

level of the inner segments showing (A) cones in

the fovea, and (B) cones in the periphery. Note the

size difference (scale bar = 10 um), and that, as the

separation between cones grows, the rod receptors fill

in the spaces. (C) Cone density plotted as a function

of distance from the center of the fovea for seven

01 02 03 04 05  hyman retinas; cone density decreases with distance
Eccentricity (mm) from the fovea. Source: Curcio et al,, 1990,

Cones/mm? (= 1000)

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)



ample (subtle).
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Median Filter Interpolation

Perform first interpolation on isolated color
channels.

Compute color difference signals.
Median filter the color difference signal.
Reconstruct the 3-color Image.



Two-color sampling of BW edge

Sampled data

Linear interpolation
O |

Color difference signal ‘ ‘




R-G, after linear interpolation




R — G, median filtered (5x5)




Recombining the median filtered colors

Linear interpolation Median filter interpolation
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