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Reading

* Related to today’s lecture:

— Adelson article on pyramid representations,
posted on web site.

— Farid paper posted on web site.

Image pyramids

« Steerable pyramid

Steerable pyramids

» Good:
— Oriented subbands
— Non-aliased subbands
— Steerable filters
» Bad:
— Overcomplete

— Have one high frequency residual subband, required in
order to form a circular region of analysis in frequency
from a square region of support in frequency.

Oriented pyramids

« Laplacian pyramid is orientation
independent
» Apply an oriented filter to determine
orientations at each layer
— by clever filter design, we can simplify
synthesis

— this represents image information at a particular
scale and orientation




Laplacian Pyramid Orriented Pyramid

Laplacian Pyramid | Dyadic QMF/Wavelet | Steerable Pyramid
sell-inverting (tight frame) [[ no yes yes
overcompleteness 1/3 1 1k/3
aliasing in subbands perhaps ves no
rotated orientation bands || no only on hex lattice [9] | yes

Table 1: Properties of the Steerable Pyramid relative to two other well-k Iti-scale rep

Simoncelli and Freeman, ICIP 1995

But we need to get rid
of the corner regions
before starting the
recursive circular
filtering

Figure 1. Idealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with & = 4. Frequency axes range from
—a o @, The basis functions are related by
translations, dilations and rotalions (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

Simoncelli and Freeman, ICIP 1995

Filter Kernels

Coarsest gc:l]eu

Image

Finest scale

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

e Summary of pyramid representations

Image pyramids
3 \ . Progressively blurred and
ﬁ subsampled versions of the
. “ image. Adds scale invariance
Gaussian é to fixed-size algorithms.
Shows the information added in
Gaussian pyramid at each
'spatial scale. Useful for noise
reduction & coding.

Laplacian

Bandpassed representation, complete, but with
WaVEIEt/QMF aliasing and some non-oriented subbands.

O shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture
and feature analysis.

Steerable pyrami




transformed image
F = Uf — Vectorized image

Linear image transformations

« In analyzing images, it’s often useful to
make a change of basis.

Fourier transform, or

Wavelet transform, or
Steerable pyramid transform

Schematic pictures of each
matrix transform

« Shown for 1-d images

» The matrices for 2-d images are the same
idea, but more complicated, to account for
vertical, as well as horizontal, neighbor
relationships.

Fourier transform

o

é Gaussian pyramid

=

s
¢ -
= * = I
Gaussian — pixel image
Fourier Fourier bases pixel domain pyramid -
transform are global: image -
each transform
coefficient
depends on all Overcomplete representation.
pixel locations. Low-pass filters, sampled
appropriately for their blur.
Laplacian pyramid avelet (QMF) transform
— Wavelet T —
L = pyramid *
Laplacian — pixel image
pyramid — | Ortho-normal pixel image

transform (like
Fourier transform),
but with localized
basis functions.

Overcomplete representation.
Transformed pixels represent
bandpassed image information.




I Steerable pyramid Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html
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An application of image pyramids:

Why use these representations? :
noise removal

Handle real-world size variations with a
constant-size vision algorithm.

* Remove noise

* Analyze texture
 Recognize objects
Label image features

Image statistics (or, mathematically,
how can you tell image from noise?)

Range [0, 255]
Ditns [384, 534]




Pixel representation
image histogram

bandpass filtered image

Range [-228, 227]
Ditms [394, 598]

bandpassed representation
image histogram

gn..um-mm-um
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Pixel domain noise image and
histogram

‘Rangs 12364083, 1 1294007]
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Bandpass domain noise image
and histogram

Noise-corrupted full-freg and bandpass images
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Bayes theorem

P(x, y) = P(xly) P(y)

SO
P(xly) P(y) = P(yx) P(x)
and
P(xly) = P(y[x) P(x) / F;(y)
The parameter_s you | Lilelihood | Constant w.r.t.
want to estimate function parameters X.

What you observe Prior probability

Bayesian MAP estimator for clean bandpass

coefficient values
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

%10
By Bayes theorem g
B
P(Xly) =k P(yx) P(x)
O
5 P(ylx)
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Bayesian MAP estimator

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.
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Bayesian MAP estimator

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.
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MAP estimate, X , as function of
observed coefficient value, y

e T
Figure Z; Dayesian estimator {symmetrzed) for
the signal and noise histograms shown in figure 1.
Superim posed on the plot s a straight lne indicat
ing the identity function.
Simoncelli and Adelson, Noise Removal via

Bayesian Wavelet Coring

Noise removal results

Figure & Noise roduction cxam, .J.-.q crppeed ) wu. age comtamisatil with additive Gausiss
e p—] \|<-uu|n < sing {remi bimd ) Woemes bl (3301 = 11,594, () lmag sostored
wilny (renitilsd) Bupula wiiz = 13551 Slmoncelll and Adelson Noise Removal via

Bayesian Wavelet Corin




Insert hany farid slides

Non-linear filtering example

Median filter

Replace each pixel by the median over N
pixels (5 pixels, for these examples).
Generalizes to “rank order” filters.

In: ‘ out: Spike
noise is
FELTEELTTTEH FEEEEEEETTTEH removed
5-pixel
neighborhood
Monotonic
remain
|||||| ””Il unchanged

Degraded image

Radius 1 median filter

Radius 2 median filter




CCD color sampling

Color sensing, 3 approaches

 Scan 3 times (temporal multiplexing)

 Use 3 detectors (3-ccd camera, and color
film)

 Use offset color samples (spatial
multiplexing)

Typical errors in temporal
multiplexing approach
« Color offset fringes

Typical errors in spatial
multiplexing approach.
* Color fringes.

CCD color filter pattern

detector

The cause of color moire

detector

Fine black and white detail in image
mis-interpreted as color information.




Black and white edge falling on
color CCD detector

—

Black and white image (edge)

Detector pixel colors

Color sampling artifact

Interpolated pixel colors,
for grey edge falling on colored
detectors (linear interpolation).

Typical color moire patterns

Blow-up of

electronic camera
image. Notice spurious
colors in the regions

of fine detail in the
plants.

Color sampling artifacts

Human Photoreceptors

©  s0p
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£ o 3.4 THE SPATIAL MOSAIC OF THE HUMAN

& 200 CONES, Cross sections of the human reting at the

] leved of the inner segments showing (A} cones in

E 150F the fovea, and (B) cones in the periphery. Note the

T 1 size difference (scale bar = 10 ym), and that, as the

g separation Letween comes grows, the rod receplor fill

g SoF in the spaces. (C) Cane density pletted as a functien
L]

of distance from the center of the fowea for seven
human retinas; cone density decreases with distance
Eocenriciey (mm) from the fovea. Source: Curcio et al, 1990,
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(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)

Brewster’s colors example (subtle).

Scale relative
to human
photoreceptor
size: each line
covers about 7
photoreceptors.

Pt fJar';::w' by bea M- Burvich

vor e,




Two-color sampling of BW edge
Median Filter Interpolation

Sampled data

Perform first interpolation on isolated color
channels.

» Compute color difference signals.
Median filter the color difference signal.
Reconstruct the 3-color image.

Linear interpolation
W |I

Color difference signal | |

R-G, after linear interpolation R — G, median filtered (5x5)

Recombining the median filtered colors

Linear interpolation Median filter interpolation




