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Today

Reading

• Related to today’s lecture: 
– Adelson article on pyramid representations, 

posted on web site.
– Farid paper posted on web site.

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

Steerable pyramids

• Good:
– Oriented subbands
– Non-aliased subbands
– Steerable filters

• Bad:
– Overcomplete
– Have one high frequency residual subband, required in 

order to form a circular region of analysis in frequency 
from a square region of support in frequency.

Oriented pyramids

• Laplacian pyramid is orientation 
independent

• Apply an oriented filter to determine 
orientations at each layer
– by clever filter design, we can simplify 

synthesis
– this represents image information at a particular 

scale and orientation
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http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

But we need to get rid 
of the corner regions 
before starting the 
recursive circular 
filtering

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

• Summary of pyramid representations

Image pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.

• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable pyramid
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Linear image transformations

• In analyzing images, it’s often useful to 
make a change of basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image

Schematic pictures of each 
matrix transform

• Shown for 1-d images
• The matrices for 2-d images are the same 

idea, but more complicated, to account for 
vertical, as well as horizontal, neighbor 
relationships.

Fourier transform

= *

pixel domain 
image

Fourier bases 
are global:  
each transform 
coefficient 
depends on all 
pixel locations.

Fourier 
transform

Gaussian pyramid

= *
pixel image

Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.

Gaussian 
pyramid

Laplacian pyramid

= *
pixel image

Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.

Laplacian
pyramid

Wavelet (QMF) transform

= *
pixel imageOrtho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  

Wavelet 
pyramid
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= *
pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 

Steerable
pyramid

Multiple 
orientations at 

one scale  

Multiple 
orientations at 
the next scale  

the next scale…

Steerable pyramid Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

Why use these representations?

• Handle real-world size variations with a 
constant-size vision algorithm.

• Remove noise
• Analyze texture
• Recognize objects
• Label image features

An application of image pyramids:
noise removal

Image statistics (or, mathematically, 
how can you tell image from noise?)
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Pixel representation 
image histogram

bandpass filtered image

bandpassed representation 
image histogram

Pixel domain noise image and 
histogram

Bandpass domain noise image 
and histogram

Noise-corrupted full-freq and bandpass images
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P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)

P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)
and
P(x|y) = P(y|x) P(x) / P(y)

Bayes theorem

P(x, y) = P(x|y) P(y)

The parameters you 
want to estimate

What you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

P(x)

Bayesian MAP estimator for clean bandpass
coefficient values

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)P(x|y)

P(x)

Bayesian MAP estimator
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)
P(x|y)

P(x)

Bayesian MAP estimator
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)

P(x|y)

MAP estimate,     , as function of 
observed coefficient value, y

y

x̂

x̂

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring

Noise removal results

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring
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Insert hany farid slides Non-linear filtering example

Median filter
Replace each pixel by the median over N 
pixels (5 pixels, for these examples).  
Generalizes to “rank order” filters.

5-pixel 
neighborhood

In: Out:

In: Out:

Spike 
noise is 
removed

Monotonic 
edges 
remain 
unchanged

Degraded image

Radius 1 median filter Radius 2 median filter
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CCD color sampling Color sensing, 3 approaches

• Scan 3 times (temporal multiplexing)
• Use 3 detectors (3-ccd camera, and color 

film)
• Use offset color samples (spatial 

multiplexing) 

Typical errors in temporal 
multiplexing approach

• Color offset fringes

Typical errors in spatial 
multiplexing approach.

• Color fringes.

CCD color filter pattern

detector

The cause of color moire

detector

Fine black and white detail in image
mis-interpreted as color information.
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Black and white edge falling on 
color CCD detector

Black and white image (edge)

Detector pixel colors

Color sampling artifact

Interpolated pixel colors, 
for grey edge falling on colored
detectors (linear interpolation).

Typical color moire patterns

Blow-up of 
electronic camera
image.  Notice spurious
colors in the regions
of fine detail in the 
plants.

Color sampling artifacts

Human Photoreceptors

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)

Brewster’s colors example (subtle).

Scale relative
to human
photoreceptor
size:  each line
covers about 7
photoreceptors.
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Median Filter Interpolation

• Perform first interpolation on isolated color 
channels.

• Compute color difference signals.
• Median filter the color difference signal.
• Reconstruct the 3-color image.

Two-color sampling of BW edge

Sampled data

Linear interpolation

Color difference signal

Median filtered color difference signal

R-G, after linear interpolation R – G, median filtered (5x5)

Recombining the median filtered colors

Linear interpolation Median filter interpolation


