Learning to separate shading from paint
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Forming an Image

Aﬁ)' [1luminate the surface to get:
N7

Surface Shading Image

The “shading image™ 1s the interaction of the shape
of the surface and the 1llumination



_  Painting the Surface
P

8

Scene Image

We can also include a reflectance pattern or a “paint”
image. Now shading and reflectance effects combine to
create the observed image.



Problem

How can we access shape or reflectance
information from the observed image?

= | £y

estimate of shape

For example:




Goal: decompose the image into
shading and reflectance components.

Image Shading Image Reflectance Image

* These types of images are known as intrinsic images (Barrow and
Tenenbaum).

* Note: while the images multiply, we work 1in a gamma-corrected
domain and assume the images add.



Why you might want to compute
these intrinsic 1mages

Ability to reason about shading and reflectance
independently 1s necessary for most image understanding
tasks.

— Material recognition

— Image segmentation
Want to understand how humans might do the task.

An engineering application: for image editing, want
access and modify the intrinsic 1mages separately

Intrinsic 1mages are a convenient representation.
— More informative than just the 1image

— Less complex than fully reconstructing the scene



Treat the separation as a labeling problem

 We want to 1dentify what parts of the image
were caused by shape changes and what
parts were caused by paint changes.

« But how represent that? Can’t label pixels
of the 1mage as “shading” or “paint”.

* Solution: we’ll label gradients 1n the 1image
as being caused by shading or paint.

* Assume that image gradients have only one
cause.



Recovering Intrinsic Images

» (lassify each x and y image derivative as being
caused by either shading or a reflectance change

* Recover the mntrinsic images by finding the least-
squares reconstruction from each set of labeled
derivatives. (Fast Matlab code for that available
from Yair Weiss’s web page.)
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Classify each derivative
(White 1s reflectance)

Original x derivative image



Classic algorithm: Retinex

(a) An example of a Mon- (b) The reflectance pattern (¢) The illumination pattern
drian image. of the mmage. of the image.

e Assume world 1s made up of Mondrian reflectance
patterns and smooth 1llumination

« Can classify derivatives by the magnitude of the
derivative



Outline of our algorithm
(and the rest of the talk)

* Gather local evidence for shading or
reflectance

— Color (chromaticity changes)
— Form (local image patterns)

 Integrate the local evidence across space.

— Assume a probabilistic model and use belief
propagation.

» Show results on example 1mages



Probabilistic graphical model

(hidden random
variables that we
want to estimate)



Probabilistic graphical model

e [.ocal evidence

Local Color Evidence

é <= Some statistical
Derivative Labels == relationship that
é we’ll specity



Probabilistic graphical model

e [.ocal evidence

Local Form Evidence ==)

€] ,cal Color Evidence

Derivative Labels ==



Probabilistic graphical model

Propagate the local evidence in Markov Random Field.
This strategy can be used to solve other low-level vision problems.

Local Evidence

11

Hidden state to be =)
estimated

Ny

Influence of Neighbor



Q’ ® Local Color Evidence

For a Lambertian surface, and simple
illumination conditions, shading only
affects the intensity of the color of a
surface

Notice that the chromaticity of each face is the
same

Any change in chromaticity must be a reflectance
change



Classitying Color Changes

Chromaticity Changes Intensity Changes

Angle between
the two vectors,

Angle between
two vectors, 6,

6, 1s greater equals 0
than 0
3 3
7 ~
¥ o

Green Green



PO’ © Color Classification Algorithm
O C};@ 5

1. Normalize the two color vectors c,

and c,
) \-/CZ

2. If(cyocy))>T
* Derivative 1s a reflectance change
* Otherwise, label derivative as shading



Result using only color information

(a) Original Image (b) Shading Image (c) Reflectance Image

Figure 1: Example. Computed using Color Detector. To facilitate printing, the mftrinsic
images have been computed from a gray-scale version of the image. The color information
1s used solely for classifying derivatives in the gray-scale copy of the image




Input B Shading | Reflectance

* Some changes are ambiguous
 Intensity changes could be caused by shading or
reflectance

— So we label it as “ambiguous”
— Need more information



@ QQ @ Utilizing local intensity patterns
O - O

* The painted eye and
the ripples of the
fabric have very
different appearances

e Can learn classifiers
which take advantage
of these differences




Shading/paint training set

Examples from Reflectance Change Training Set




From Weak to Strong Classifiers:
Boosting

Individually these weak classifiers aren’t very good.
Can be combined 1nto a single strong classifier.
Call the classification from a weak classifier 4,(x).
Each 4,(x) votes for the classification of x (-1 or 1).

Those votes are weighted and combined to produce a
final classification.

H(x)=sign| » ah(x)



O
e Create a set of weak classifiers that use a

small 1mage patch to classify each
derivative

e
O

@ Using Local Intensity Patterns
O

 The classification of a derivative:

b['] *n > ]
3 F



Initial uniform weight @)
AdaB 00 St on training examples O O
(Freund & Shapire *95) O
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weak classifier 1

Incorrect classifications ﬁ IiO
re-weighted more heavily O,

weak classifier 2
\\O ll O
\I O

weak classifier 3 g O
\
O o
\
Final classifier is weighted O \ O
combination of weak classifiers ‘\

Viola and Jones, Robust object detection using a boosted cascade of simple features, CYPR \
1




Use Newton’s method to reduce
classification cost over training set

Classification cost

Treat h , as a perturbation, and expand loss J to second order in h,_

arg min J(H+h,,) =~ algmmz £ [ - R C h"m)z]

h m h m




Adaboost demo...



e
O

¢ @ Learning the Classifiers

¢

« The weak classifiers, 4,(x), and the weights a are chosen
using the AdaBoost algorithm (see for
introduction).

* Train on synthetic images.
* Assume the light direction is from the right.

» Filters for the candidate weak classifiers—cascade two out of
these 4 categories:
— Multiple orientations of 15t derivative of Gaussian filters
— Multiple orientations of 2" derivative of Gaussian filters
— Several widths of Gaussian filters
— 1mpulse


http://www.boosting.org/

® Classitiers Chosen
O

Weak Classifiers

| 2 3 4 7 8 9 10
[ 2. 8405 [ 0.5 [0.03% B.49% BA6% m01%% 6.72%, .96,

[ 63805 ¥ [L L%

* These are the filters chosen for classifying
vertical derivatives when the 1llumination
comes from the top of the image.

 Each filter corresponds to one /.(x)



Characterizing the learned
classifiers

EE[?![IEIEII]

Learned rules for all (but classifier 9) are: if rectified filter
response 1s above a threshold, vote for reflectance.

Yes, contrast and scale are all folded into that. We perform an
overall contrast normalization on all images.

Classifier 1 (the best performing single filter to apply) 1s an
empirical justification for Retinex algorithm: treat small derivative
values as shading.

The other classifiers look for image structure oriented
perpendicular to lighting direction as evidence for reflectance
change.



Results Using Only
Form Information

Input Image Shading Image Reflectance Image



Using Both Color and
Form Information

Input 1mage )

Results only using
chromaticity. @
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Some Areas of the Image Are
Locally Ambiguous

Is the change here better explained as

it . . = t
Input
or !

Shading Reflectance




Propagating Information

* Can disambiguate areas by propagating
information from reliable areas of the image
into ambiguous areas of the 1image




Markov Random Fields

« Allows rich probabilistic models for
1mages.

* But built 1n a local, modular way. Learn
local relationships, get global effects out.







Inference in MRF’s

 Inference in MREF’s. (given observations, how
infer the hidden states?)
— Gibbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods
— Belief propagation
— QGraph cuts

Noe www.al.mit.edu/people/wtt/learningvision§ie) &
tutorial on learning and vision.


http://www.ai.mit.edu/people/wtf/learningvision

Derivation of belief propagation
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The posterior factorizes
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Propagation rules
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Propagation rules

mean ¢
X1

SUum
X2




b;(x;)= HM;C('XJ')

keN(j)

M/ (x,) = ZWU(X,,X) [ [M7(x)

keN(j)\i



Optimal solution 1n a chain or tree:
Beliet Propagation

e “Do the right thing” Bayesian algorithm.

e For Gaussian random variables over time:
Kalman filter.

* For hidden Markov models:
forward/backward algorithm (and MAP

variant 1s Viterbi).



No factorization with loops!

meean
X1

SUum
X2




Justification for running belief propagation

in networks with loops
* Experimental results:

— Error-correcting codes

— Vision applications

e Theoretical results:
— For Gaussian processes, means are correct.
— Large neighborhood local maximum for MAP.
— Equivalent to Bethe approx. in statistical physics.

— Tree-weighted reparameterization



bi('xi) :kq)(xi) HMik(xi)

keN (i)

by(x;,x;) =k ¥ (x;,x,) HMl.k(xl.) HM]’f(xj)

keN(i)\j keN(j)\i



Belief propagation equations

Belief propagation equations come from the
marginalization constraints.

. qmm



Results from Bethe free energy analysis

Fixed point of belief propagation equations 1ff. Bethe
approximation stationary point.

Belief propagation always has a fixed point.

Connection with variational methods for inference: both
minimize approximations to Free Energy,

— variational: usually use primal variables.

— belief propagation: fixed pt. equs. for dual variables.

Kikuchi approximations lead to more accurate belief
propagation algorithms.

Other Bethe free energy minimization algorithms—
Yuille, Welling, etc.



Kikuchi message-update rules

Groups of nodes send messages to other groups of nodes.

D Typical choice for Kikuchi cluster.

Update for Update for
messages messages



Generalized belief propagation

: il
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BP GBP ML |

4 ] i 7 i Tl

Node number



References on BP and GBP

J. Pearl, 1985

— classic
Y. Weiss, NIPS 1998
— Inspires application of BP to vision

W. Freeman et al learning low-level vision, [JICV 1999

— Applications in super-resolution, motion, shading/paint
discrimination

H. Shum et al, ECCV 2002

— Application to stereo

M. Wainwright, T. Jaakkola, A. Willsky

— Reparameterization version

J. Yedidia, AAAI 2000
— The clearest place to read about BP and GBP.



Propagating Information

» Extend probability model to consider relationship
between neighboring derivatives

et

| B =B
/- W( 29 ] I |:1 —IB IB :|
* 3 controls how necessary it is for two nodes to have

the same label

» Use Generalized Belief Propagation to infer labels.
(Yedidia et al. 2000)



Propagating Information

» Extend probability model to consider relationship
between neighboring derivatives

Classification
) derlvatlve

| £ 1=5
/-W(9]_|:1_IB ﬂ:|

* 3 controls how necessary it is for two nodes to have
the same label

» Use Generalized Belief Propagation to infer labels.
(Yedidia et al. 2000)



Setting Compatibilities

All compatibilities have form

e x){ﬂ l_ﬂ
g p

Assume derivatives along image

contours should have the same
label

Set B close to 1 when the

derivatives are along a contour - B |

Set B to 0.5 1f no contour 1s 0.5 1.0
present

B 1s computed from a linear
function of the image gradient’s
magnitude and orientation



Improvements Using Propagation

Input Image Reflectance Image Reflectance Image
Without Propagation With Propagation




More results...



J. J. Gibson,

RRRALCR LI, SE-dba s gkl Al aREEE

SR LS LAY OO LETIE 1R WO 113
I:III'!'iI: ITTIAY I'hat iz, they mapy TH Bk B L s :I.E;::! i |E||' |.|
mnce of o bBborder: or -'i|'||' MY CEisE 5 .|._-|'|-,' III-I- |'|'_I.I' vy o
" . - L 5 -
ther | soo Firare 100,15 For example, one kind of wallpaper may
Hoki o PP S I I I I | ¥ 1= I
ANEERL 0 ] 10T EmMassedd, Baving no diferences ol JEH}-

inted pattern. Another kind may structure light on y by differences

having no appreciable roughness of textur

in pigment or ink, hi Hut a
1 96 8 common sort of wallpaper has both embessing and printing in
gence. 1w '\-|II-|"||I'|.'_' ||.i='-|'-||-\. i” WHIANER ',l,;:-,, urdeee |.'..L and vege-
tation. Une or the other End o |'|':'--|E structuring, i not both, is [T
Heally puarantecd in nature, For this reason the information for ()
AR it A surtace @s against emphy air &5 vsually trastworthy
L vahly the LW |'IIII-..'I.| g eonild work in exact opposition to o
anather. It is theoretically possible to construct a room which would 1
mvinbie Gt a Hxed monocila '=5.|:'l:i.-|:-'-ll|: IF i ||:E.= b il wilh ver
moath unpatterned surfaces by a precise counterbalancing of inclination
I'|'| |:i.l|_|||.. that mll b T |'|-l T i||-' gy 1 1]
junctions. of planes in the room lisappeared. The room i slmp

The Senses Considered

as Perceptual Systems

James J. Gibson | Cormell University

ot |'I'|IEr||'\-'\-|||;_'. [t
i

! Company

| D

Figure 10013

Emibossing witliout |_||'i|1|i.||.-_I mral I
3 1 o s e

mbing witli-
8l 1

ab a paper. surl il v thie refl

L [T




Gibson 1mage

original (-bmpdny

shading

reflectance (?ompﬂn,y




Clothing catalog image

Original Shading Reflectance
(from LL Bean catalog)




Sign at train crossing

WHISTLES
NOT

BLOWN



Separated 1images

=
<
Tie
r
T

S

original shading reflectance

Note: color cue omitted for
this processing




(a) Onginal Image




(a) Onginal Image (b) Shape Image (¢) Reflectance Image




Finally, returning to our explanatory example...

input Ideal shading image  Ideal paint image

Algorithm output.
Note: occluding edges
labeled as reflectance.




Summary

* Sought an algorithm to separate shading and
reflectance 1mage components.

* Achieved good results on real images.

» Classify local derivatives

— Learn classifiers for derivatives based on local
evidence, both color and form.

* Propagate local evidence to improve
classifications.

For manuscripts, see www.ai.mit.edu/people/wtt/
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