Learning to separate shading from paint
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Scene
We can also include a reflectance pattern or a “paint”
image. Now shading and reflectance effects combine to
create the observed image.

Goal: decompose the image 1nto
shading and reflectance components.

Image Shading Image Reflectance Image

« These types of images are known as intrinsic images (Barrow and
Tenenbaum).

» Note: while the images multiply, we work in a gamma-corrected
domain and assume the images add.

Forming an Image
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:‘ﬁ): [lluminate the surface to get:
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Surface Shading Image

The “shading image” is the interaction of the shape
of the surface and the illumination

Problem

How can we access shape or reflectance
information from the observed image?

For example:

image estimate of shape

Why you might want to compute
these intrinsic images

Ability to reason about shading and reflectance
independently is necessary for most image understanding
tasks.

— Material recognition

— Image segmentation
Want to understand how humans might do the task.
An engineering application: for image editing, want
access and modify the intrinsic images separately
Intrinsic images are a convenient representation.

— More informative than just the image

— Less complex than fully reconstructing the scene



. . Recovering Intrinsic Images
Treat the separation as a labeling problem & ©
Classify each x and y image derivative as being

: g o g caused by either shading or a reflectance change
We want to identify what parts of the image Y ether shading o 2
b Recover the intrinsic images by finding the least-

were caused by shape changes and what squares reconstruction from each set of labeled
parts were caused by paint changes. derivatives. (Fast Matlab code for that available
But how represent that? Can’t label pixels from Yair Weiss’s web page.)

of the image as “shading” or “paint”. |

Solution: we’ll label gradients in the image

as being caused by shading or paint.

Assume that image gradients have only one

cause. . T C fy each derivative
Original x derivative image o
(White is reflectance)

Classic algorithm: Retinex Outline of our algorithm
(and the rest of the talk)

* Gather local evidence for shading or
reflectance
— Color (chromaticity changes)
(0 An cxamps o Moo () The reflctance o €T it e — Form (local image patterns)
* Integrate the local evidence across space.

» Assume world is made up of Mondrian reflectance _ Assume a probabilistic model and use belief
patterns and smooth illumination propagatioh >

* Can classify derivatives by the magnitude of the

S + Show results on example images
derivative

Probabilistic graphical model Probabilistic graphical model

* Local evidence

Local Color Evidence

!

Unknown O é ‘@ Some statistical
Derivative Labels ‘ O O Derivative Labels == relationship that
(hidden random we’ll specify
variables that we é

want to estimate)




Probabilistic graphical model

* Local evidence

Local Form Evidence == =1 ocal Color Evidence

Derivative Labels -% %%

~ @ Local Color Evidence

For a Lambertian surface, and simple
illumination conditions, shading only
affects the intensity of the color of a

surface ‘

Notice that the chromaticity of each face is the
same
Any change in chromaticity must be a reflectance
change

£ Color Classification Algorithm

1. Normalize the two color vectors ¢,
and c,
¢ C)

2. If(cyocy) >T
» Derivative is a reflectance change
» Otherwise, label derivative as shading

Probabilistic graphical model

Propagate the local evidence in Markov Random Field.
Th ategy can be used to solve other low-level vision problems.

Local Evidence

o

Hidden state to be mm)
estimated

N

Influence of Neighbor

Classifying Color Changes

Chromaticity Changes Intensity Changes
Angle between Angle between
the two vectors, two vectors, 6,
6, is greater equals 0
than 0

Green Green

Result using only color information

a3

{a) Criginal Inage {b) Shading Image () Reflectance Image

Figure 1: Example. Computed using Color Detector. To facilitate printing, the intrinsic
images ha cen computed from o gray-scale versi he image. The color infarmation

15 used solely for classifying dervatives m opy of the imagce
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Results Using Only Color

P 1 . |
Input Shading Reflectance

» Some changes are ambiguous
« Intensity changes could be caused by shading or
reflectance
— So we label it as “ambiguous”
— Need more information

Shading/paint training set

Examples from Reflectance Change Training Set

Create a set of weak classifiers that use a
small image patch to classify each
derivative

The classification of a derivative:

* The painted eye and
the ripples of the
fabric have very
different appearances

* Can learn classifiers
which take advantage
of these differences

From Weak to Strong Classifiers:
Boosting

Individually these weak classifiers aren’t very good.
Can be combined into a single strong classifier.
Call the classification from a weak classifier /;(x).
Each h,(x) votes for the classification of x (-1 or 1).

Those votes are weighted and combined to produce a
final classification.

H(x) = sign Za,.h,.(x)

O O
o 2.0
O O
S(x)= G(Za,h, (x)] O O
a,=0.5 log[ﬂ] J O O
1-error, O 5 .
O

W=
¢ zwli_le-y;a,h,(x()
i




Use Newton’s method to reduce
classification cost over training set

Classification cost

Treat h,, as a perturbation, and expand loss J to second order in h,

c
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Learning the Classifiers

he weak classifiers, 4,(x), and the weights a are chosen
using the AdaBoost algorithm (see for
introduction).
ain on synthetic images
ime the light direct s from the right.

Filters for the candidate weak classifiers—cascade two out of
these 4 categories:
— Multiple orientations of 1% derivati ian filters
— Multiple ori ¢
Several widths o
impulse

Characterizing the learned
classifiers

Weak Clasuafiers

or all (but cl r 9) are: ified filter
bove a threshold, vote for reflectanc
ast and scale are all folded into that. We perform an
all contrast normalization on all image:
fier 1 (the best performing single filter to apply) is an

1 justification for Retinex algorithm: tr nall derivative

s shading.
The other classifi ook for image structure oriented
perpendicular to lighting direction as evidence for reflectance
change.

Adaboost demo...

Weak Clasuafiers

* These are the filters chosen for classifying
vertical derivatives when the illumination
comes from the top of the image.

* Each filter corresponds to one 4,(x)

Results Using Only
Form Information
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Input Image Shading Image Reflectance Image




Using Both Color and Some Areas of the Image Are
Form Information Locally Ambiguous
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Shading Reflectance

Propagating Information
» Can disambiguate areas by propagating
information from reliable areas of the image
into ambiguous areas of the image

Markov Random Fields

* Allows rich probabilistic models for
images.

* But built in a local, modular way. Learn
local relationships, get global effects out.
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Network joint probability Inference in MRF’s

* Inference in MRE’s. (given observations, how
infer the hidden states?)
— Gibbs sampling, simulated annealing
— Iterated condtional modes (ICM)
I e — Variational methods

|

scene ‘ Scene-scene Image-scene — Belief propagation
image compatibility compatibility _ Gy
function function
neighboring local
scene nodes observations

N www.ai.mit.edu/people/wtf/learningvisionSteiees

tutorial on learning and vision.




Derivation of belief propagation The posterior factorizes

mean sum

Propagation rules Propagation rules

mean sum
X X-

mean sum

gl B

mean
&1
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Belief’ and message updates OptilTlal SO]UtiOﬂ 1n a Chaill or tree:
Belief Propagation

* “Do the right thing” Bayesian algorithm.

¢ For Gaussian random variables over time:
Kalman filter.

¢ For hidden Markov models:
forward/backward algorithm (and MAP
variant is Viterbi).




Justification for running belief propagation
in networks with loops

» Experimental results:
mean
il — Error-correcting codes

2]

No factorization with loops!

— Vision applications
» Theoretical results:
— For Gaussian processes, means are correct.
— Large neighborhood local maximum for MAP.
— Equivalent to Bethe approx. in statistical physics.

— Tree-weighted reparameterization

Region marginal probabilities - : :

Belief propagation equations

Belief propagation equations come from the
marginalization constraints.

Results from Bethe free energy analysis Kikuchi message-update rules

Groups of nodes send messages to other groups of nodes.
Fixed point of belief propagation equations iff. Bethe

approximation stationary point. D S
Belief propagation always has a fixed point.
Connection with variational methods for inference: both
minimize approximations to Free Energy,
— variational: usually use primal variables.
— belief propagation: fixed pt. equs. for dual variables.
Kikuchi approximations lead to more accurate belief
propagation algorithms.
Other Bethe free energy minimization algorithms—
Yuille, Welling, etc.




Generalized belief propagation References on BP and GBP

J. Pearl, 1985
— classic
Y. Weiss, NIPS 1998
— Inspires application of BP to vision
W. Freeman et al learning low-level vision, IJCV 1999
— Applications in super-resolution, motion, shading/paint
discrimination
H. Shum et al, ECCV 2002
— Application to stereo
10 M. Wainwright, T. Jaakkola, A. Willsky
— Reparameterization version
J. Yedidia, AAAT 2000
— The clearest place to read about BP and GBP.

Local magnetizntion

BF GBF ML

Node number

Propagating Information Propagating Information

» Extend probability model to consider relationship  Extend probability model to consider relationship
between neighboring derivatives between neighboring derivatives

(\g Classification (\6
% e %% of a derivative % e %%
B 1-p

\é)- l//(A\n»\‘,){]_'ﬂ [f’} \é - B

* 3 controls how necessary it is for two nodes to have * [3 controls how necessary it is for two nodes to have
the same label the same label

R Ko

* Use Generalized Belief Propagation to infer labels. * Use Generalized Belief Propagation to infer labels.
(Yedidia et al. 2000) (Yedidia et al. 2000)

Setting Compatibilities

All compatibilities have form

B 1-p
w(x,x;)=
-5 B
Assume derivatives along image
contours should have the same

[ELS o . T ] 3

Set ﬁ close to 1 when the Input Image Reflectance Reflectance Image
derivatives are along a contour Without Prop With Propagation
Set B to 0.5 if no contour is

present

B is computed from a linear

function of the image gradient’s

magnitude and orientation




original

shading

More results...

Gibson image

Company

Coipaity

J. J. Gibson,
1968

The Senses Considered

as Pereeptual Systems

Jamrs J. Gibon | Cormedl Finiversity

reflectance

Company

Sign at train crossing

Clothing catalog image

Original
(from LL Bean catalog)

Separated images
—

original shading reflectance

Note: color cue omitted for
this processing
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(a) Original Image

Finally, returning to our explanatory example...

input Ideal shading image  Ideal paint image

Algorithm output.
Note: occluding edges
labeled as reflectance.

(a) Original Image {b) Shape Image (c) Reflectance Image

Summary

Sought an algorithm to separate shading and
reflectance image components.

Achieved good results on real images.
Classify local derivatives

— Learn classifiers for derivatives based on local
evidence, both color and form.

Propagate local evidence to improve
classifications.

For manuscripts, see www.ai.mit.edu/people/wtf/
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