6.869

Computer Vision

Prof. Bill Freeman

Particle Filter Tracking
— Particle filtering

Readings: F&P Extra Chapter: “Particle Filtering”



Schedule

Tuesday, May 3:
— Particle filters, tracking humans, Exam 2 out

Thursday, May b5:

— Tracking humans, and how to write conference papers
& give talks, Exam 2 due

Tuesday, May 10:

— Motion microscopy, separating shading and paint (“fun
things my group is doing”)

Thursday, May 12:
— 5-10 min. student project presentations, projects due.



1D Kalman filter

xi ~ Nidizi_1,04)

Dvnamic Model:

yi ~ N(miZi, Om, )

Start Assumptions: T, and o, are known
Update Equations: Prediction

Time Update
(“Predict™)

Measurement Update
(*Correct™)




Kalman filter for computing an on-line average

* What Kalman filter parameters and initial
conditions should we pick so that the optimal
estimate for x at each iteration is just the average
of all the observations seen so far?



Kalman filter model

d =1 m =1 04 =0, 0. =1

xi ~ Nidizi_1,04)
Initial conditions
X, =0 o0, =

yi ~ N(miZi, Om, )
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What happens if the x dynamics are given a
NoN-zero variance?



Kalman filter model

d =1 m =1, Oy =

xi ~ Nidizi_1,04)

Initial conditions
X, =0 o, =

yi ~ N(miZi, Om, )
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(KF) Distribution propagation

prediction from previous time frame

determimstic drift
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reactive effect of measurement

Make new measurement at next time frame

that
/ prediction
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Distribution propagation

)

stochastic diffusion

reactive effect of measuements

/
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Representing non-linear Distributions
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Representing non-linear Distributions

Unimodal parametric models fail to capture real-
world densities...
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Representing non-linear Distributions

Mixture models are appealing, but very hard to
propagate analytically!
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Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:
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Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:

Mox
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Representing distributions using
welghted samples, another picture

Probability — posterior
density

@ weighted

W

>o @ QDO .. o State
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Sampled representation of a
probability distribution

Represent a probability distribution

A(X)
X) =
by a set of N weighted samples
{(u', w')}

where ©' ~ s(u) and w* = f(u*)/s(u®).

You can also think of this as a sum of dirac delta
functions, each of weight w:

P, ()= Y W(x-u')

16



Marginalizing a sampled density

If we have a sampled representation of a joint density
{((m',n"),w')}
and we wish to marginalize over one variable:
pi(M) = [ps(M,N)IN

we can simply ignore the corresponding components of the
samples (!):

/( Jps(M)dM = / /prN)deM

// M)p(M, N)ANdM
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Marginalizing a sampled density

Assume we have a sampled representation of a distribution
pf(M,N)

given by
Then

is a representation of the marginal,

/Pf(M:N)dN
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Sampled Bayes Rule

Transforming a Sampled Representation of a
Prior into a Sampled Representation of a
Posterior:

/ gU)p(U|V =1g)dU = % / g(Up(V = v, |U)p(U)dU

posterior likelihood, prior
1 g(uh)p(V = wolu)w
~ A
K Zi:lw

D 9(w)p(V = woluw
> ity p(V = wolui)w
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Sampled Bayes rule

Assume we have a representation of p(U) as

{(u',w')}
Assume we have an observation V = wvg,

and a likelihood model p(V|U).

The posterior, p(U|V = vg) is represented by

{(ui? wri)}
where

w” = p(V = volu)w'
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Sampled Prediction

P(%‘yo?~+}yi—1) — ’)

P(X£—1|ym Ceey yi—l)

{(uik—lﬁwf—l)}
— ;= f(®i1)+ & —

{((f(uf—l) T 52-; uik—l)? wf—l)}
p(X?:?'X-i—l‘yO? = +:~yi—1)

Drop elements to marginalize to get
P(xi|Yo, .- - Yio1) ~=

{(f(uf—l) + &, w?—l)}

—



Sampled Correction (Bayes rule)

Prior = posterior

Reweight every sample with the likelihood of the
observations, given that sample:

p(Y: =y, | X; = b ™

(4

yielding a set of samples describing the probability
distribution after the correction (update) step:

{(s5", p(¥s = I — s )}
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Naive PF Tracking

o Start with samples from something simple
(Gaussian)

 Repeat

— Correct

— Predict
{(f(uf—l) + &, ’U-f’f—l)}

But doesn’t work that well because of sample
Impoverishment...
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Sample impoverishment

Test with linear case:
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Sample impoverishment

10 of the 100 particles, along with the true Kalman
filter track, with variance:
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Resample the prior

In a sampled density representation, the frequency of
samples can be traded off against weight:

(Sk: 1)
(56,1) N, copi Ni
> ? N ples S.t. —

These new samples are a representation of the same
density.

l.e., make N draws with replacement from the
original set of samples, using the weights as the
probability of drawing a sample. %



Resampling concentrates samples

: :
1 R T TIR T I YL e, ||
ETOALL $ot sty Yot
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A practical particle filter with resampling

Initialization: Represent P{X ) by a set of N samples

{0}

where
,S’E‘;r_ ~ P.(5) and wé"’_ = P(SE’_:'/Ps(S = ‘SE?_)

Ideally, P(X ;) has a simple form and sg'™ ~ P(Xo) and wi'™ = 1.
Prediction: Represent P(X;|y,, ¥,_1) by

L)

where
57 = F(sih) + £ and wl'T = wi' and £ ~ N(0,24,)

Correction: Represent P{X,|y,,y.) by

{8 wih)]

where
Iﬂr"‘ — .fc,,— Iﬂr"‘ — — J— I'*r_ 'E"'r_
8 5.’ and w; 2Y, yi-|?£'z s, )2y

T

Resampling: Normalise the weiphts so that Ziwiﬂ’+ = 1 and compute the
variance of the normalised weights. If this variance exceeds some threshold,
then construct a new set of samples by drawing, with replacement, N samples
from the old set, using the weiphts as the probability that a sample will be drawn.
The weight of each sample is now 1/N.
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A variant (predict, then resample, then correct)

predict

measure

29
[Isard 1998]



2 Contour tracking by stochastic propagation of conditional density - Mozilla Firefox
File Edit \iew Go  Bookmarks  Tools  Help @

f
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" Getting Started L:,', Latest Headlines

Contour tracking by stochastic propagation of conditional density

Michael Isard and Andrew Blake

Proc. European Conference on Computer Vision, vol. 1, pp. 343--356, Cambridge UL,
(1996).

Abstract

The problem of trackung curves m dense wisual clutter 15 a challenging one. Trackers based on Ealman filters are of lrmted use;
because they are based on Gaussian densities which are unimodal, they cannot represent simultaneous alternative hypotheses.
Extensions to the Kalman filter to handle multiple data associations work satisfactorily i the simple case of pount targets, but
do not extend naturally to continuous curves. A new, stochastic algonthm is proposed here, the Condensation algorithin ---
Conditonal Denstty Propagation over tune. It uses 'factored sampling', a method previcusly appled to mterpretation of static
images, i which the distnbution of possible mterpretations 18 represented by a randomly generated set of representatives. The
Condensation algorthm combanes factored sampling with learned dynarmical models to propagate an entire probabality
distribution for ebiect position and shape, ower time. The result iz highly robust tracking of agile motion in clutter, marlke dly
superior to what has previcusly been attamable from Ealman Hitering. Motwithstanding the use of stochastic methods, the
algorithn rings in near real-tirme.

Chclk here for a compressed postscript wersion

Back to

Michael Isard's home page




A variant (animation)
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[Isard 1998]



Tracking
— hands
— bodies
— leaves

Applications
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Contour tracking
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Head tracking
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Leaf tracking
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Hand tracking
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[Isard 1998]



Mixed state tracking
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[Isard 1998]



Outline

o Sampling densities
 Particle filtering

[Figures from F&P except as noted]
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