6.869

Computer Vision

Prof. Bill Freeman

Particle Filter Tracking
— Particle filtering

Readings: F&P Extra Chapter: “Particle Filtering”

Schedule

» Tuesday, May 3:
— Particle filters, tracking humans, Exam 2 out
» Thursday, May 5:

— Tracking humans, and how to write conference papers
& give talks, Exam 2 due

» Tuesday, May 10:

— Motion microscopy, separating shading and paint (“fun
things my group is doing”)

* Thursday, May 12:
— 5-10 min. student project presentations, projects due.
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Kalman filter for computing an on-line average

» What Kalman filter parameters and initial

conditions should we pick so that the optimal
estimate for x at each iteration is just the average
of all the observations seen so far?

Kalman filter model
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What happens if the x dynamics are given a
non-zero variance?




Kalman filter model
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(KF) Distribution propagation

prediction from previous time frame
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Distribution propagation
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Representing non-linear Distributions

Representing non-linear Distributions

Unimodal parametric models fail to capture real-
world densities...

P

Representing non-linear Distributions

Mixture models are appealing, but very hard to
propagate analytically!
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Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:

Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:

Representing distributions using
weighted samples, another picture
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Sampled representation of a
probability distribution

Represent a probability distribution
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by a set of N weighted samples
{(u, )}
where u' ~ s{u) and w' = flu')/s(u’).

You can also think of this as a sum of dirac delta
functions, each of weight w:

P (¥)= Y wWa(x-u') z

Marginalizing a sampled density

If we have a sampled representation of a joint density
{{(m',n'),w)}
and we wish to marginalize over one variable:
p:(M) = [ps(M, NN

we can simply ignore the corresponding components of the
samples (1):

]g[)‘l«f];:_,-(}'rf M fr;(M; [;-_,-(M.N].;N.;M

/ j g(M)p; (M, NYINIM

52 glmiyo

Y wi

Marginalizing a sampled density

Assume we have a sampled representation of a distribution
ps(M,N)

given by o _
{(_[in’\u*]\ w')}
Then

{{im', w')}

is a representation of the marginal,

/ po(M, N)IN




Sampled Bayes Rule

Transforming a Sampled Representation of a
Prior into a Sampled Representation of a

Posterior:
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Sampled Bayes rule
Assume we have a representation of p(U) as

{{u'. w')}
Assume we have an observation V' = vy,

and a likelihood model p(V'|U).
The posterior, p(U|V" = vg) is represented by
{{u',w'")}
where

W't = p(V = vglu ol

Sampled Prediction
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Sampled Correction (Bayes rule)

Prior - posterior
Reweight every sample with the likelihood of the
observations, given that sample:

p(Y; =y, X = sl wl

yielding a set of samples describing the probability
distribution after the correction (update) step:
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Naive PF Tracking

« Start with samples from something simple
(Gaussian)

» Repeat
- Correct
{(sF7 p(¥i =yl X = s}yl }
— Predict

(b + €k}

But doesn’t work that well because of sample
impoverishment...
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Sample impoverishment

Test with linear case:
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Sample impoverishment Resample the prior
In a sampled density representation, the frequency of

10 of the 100 particles, along with the true Kalman
samples can be traded off against weight:

filter track, with variance:
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' These new samples are a representation of the same

density.

l.e., make N draws with replacement from the
original set of samples, using the weights as the
2 probability of drawing a sample. 2

A practical particle filter with resampling

Initialization: Ropresat P(X o) by a set of N samples

Resampling concentrates samples
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A variant (predict, then resample, then correct)
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3 Cantiur tracking by sis
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Centour tracking by stechastic propagation of conditional density
Michael Tsurd and Andrew Blake

Proc. Enropean Conference on Cemputer Vision, vol. 1, pp. 343356, Cambridge UK,
(1995).
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A variant (animation)
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Applications

Tracking
— hands
— bodies
— leaves

Contour tracking
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Head tracking
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Leaf tracking
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Hand tracking
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Mixed state tracking
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Outline

» Sampling densities
* Particle filtering

[Figures from F&P except as noted]




