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Computer Vision and Applications

Prof. Bill Freeman

Tracking
— Density propagation
— Linear Dynamic models / Kalman filter
— Data association
— Multiple models

Readings: F&P Ch 17



Huttenlocher talk

|-fan 2-fan 3-Tan

Figure 1. Some k-fans on 6 nodes. The reference nodes are shown
in black while the regular nodes are shown in gray.



Huttenlocher talk
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(a) Airplane, 1-fan

o

g Vertical Horizontal 45 degrees 135 degrees

{(d) Motorbike front wheel, probability of edge at each orientation

{¢) Motorbike, 1-fan

{b) Airplane, 2-fan

Figure 2. Ilustration of some of the learned models. Images (a) through (c) show part appearance models positioned at their mean
configuration. The reference parts have a black border around them. The ellipses illustrate the location variances for a non-reference part
given the locations of the references. High intensity pixels represent high edge probabilities. For clarity, just the probability of an edge is
shown, although the actual models capture probabilities of each individual edge orientation. In (d), the probability map template for each
edge orientation is shown for a sample part (the front wheel of the motorbike model). Note how the locations of parts in the 2-fan airplane
model are more constrained than in the 1-fan model.



Huttenlocher talk

Figure 4. Sample localization results. In each of these cases all paris were localized correctly.



Schedule

Thursday, April 28:
— Kalman filter, PS4 due.

Tuesday, May 3:
— Tracking articulated objects, Exam 2 out

Thursday, May 5:
— How to write papers & give talks, Exam 2 due

Tuesday, May 10:

— Motion microscopy, separating shading and paint (“fun
things my group is doing”)

Thursday, May 12:
— 5-10 min. student project presentations, projects due.



Tracking Applications

Motion capture
Recognition from motion
Surveillance

Targeting



Things to consider in tracking

What are the

* Real world dynamics

e Approximate / assumed model

e QObservation / measurement process



Density propogation

* Tracking == Inference over time

« Much simplification is possible with linear
dynamics and Gaussian probability models



Outline

Recursive filters

State abstraction

Density propagation

_inear Dynamic models / Kalman filter
Data association

Multiple models




Tracking and Recursive estimation

* Real-time / interactive imperative.

e Task: At each time point, re-compute estimate of
position or pose.
— At time n, fit model to data using time 0...n
— At time n+1, fit model to data using time 0...n+1

* Repeat batch fit every time?
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Recursive estimation

Decompose estimation problem
— part that depends on new observation
— part that can be computed from previous history

E.g., running average:
8 = aayy *+(1-0) Y,

Linear Gaussian models: Kalman Filter
First, general framework...
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Tracking

* Very general model:

— We assume there are moving objects, which have an underlying
state X

— There are measurements Y, some of which are functions of this
state

— There is a clock
o at each tick, the state changes
« at each tick, we get a new observation

o Examples

— object is ball, state is 3D position+velocity, measurements are
stereo pairs

— object is person, state is body configuration, measurements are
frames, clock is in camera (30 fps)
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Three main issues In tracking

¢ Prediction: we have seen yg,...,Y; what state does this set of mea-
surements predict for the ¢’th frame? to solve this problem, we need to obtain
a representation of P(X;|Yo=vyq,....Yi1 =Y, 1)

e Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P(X;|Yo =vyy,...,Yi—1 =
Yy, 1) to identify these measurements.

e Correction: now that we have y, — the relevant measurements — we need
to compute a representation of P(X;|Yo =1vyq,.... Y =y.).
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Simplifying Assumptions

¢ Only the immediate past matters: formally, we require
P(X;|Xq,...,X; 1) =P(X;| X; 1)

This assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn’t terribly restrictive if we're clever about interpreting X;
as we shall show in the next section.

e Measurements depend only on the current state: we assume that Y;
is conditionally independent of all other measurements given X ;. This means
that

P(Y, Y, .. YX:) = P(Y|X)P(Y,, ..., Y X))

Again, this isn’t a particularly restrictive or controversial assumption, but it
yields important simplifications.
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Kalman filter graphical model



Tracking as induction

e Assume data association iIs done
— we’ll talk about this later; a dangerous assumption

e Do correction for the 0’th frame

* Assume we have corrected estimate for 1’th frame
— show we can do prediction for i+1, correction for i+1

16



Base case

Firstly, we assume that we have P{X)

P Xo)P(X
P(Xo|Yo=1yy) = (yo| X0)P(X0o)

P(y,)

X P(y(J‘XU)P(X())

17



Induction step

Prediction

Prediction involves representing

P(Xf-|yu= R ’H-,:—L)

given
P(X; 1|ygy--- Y1)

Our independence assumptions make it possible to write

P{X1|y[}' L y'ﬁ.—l) — ‘/P(X“ X-,n'_—]_|yn, " o ?y'.".—l)dX?:—l
- fP(X.;|X.|;__1, Yoy o vy-i—l)P(X-i—L|ynv T y-ﬁ.—lj‘dxvi—l
= [ PIX )Py 9 )d Xy
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Update step

Correction

Correction involves obtaining a representation of
P(Xilygs-- 5 9;)
given
I)(-X'i|yﬂ.& o] yi—])

Our independence assumptions make it possible to write

P(Xi:yo: : --:yg‘,)

IJ(-X?.'.|yUa . 'Jyé) —

P(y;| X yo, -y 1) P( Xy, v )P (Yo, -, ¥ 1)

1)(y05"'1yi)
‘[J('y :"'ay-;r'— )
= P(y;| X)) P(Xilygs -1 Yi_1) P(; y)l
0r: -2
I)(yé‘X'i)l)(‘X'i|y0a'":yi—l)
[ P(y;| X)P(Xilyg: -,y _1)d X,




Linear dynamic models

A linear dynamic model has the form

Xi = N(Di—lxi—l;zdi]

y. = N(M.x.'Zmi)

e This is much, much more general than it looks, and extremely
powerful

20



Examples %= NOwxiiZ, )

y, = N(I\/I.x.'zmi)

Drifting points

— assume that the new position of the point is the old one,
plus noise

cic.nist.gov/lipman/sciviz/images/random3.gif 21
http://www.grunch.net/synergetics/images/random

3.jpg



Constant velocity % =NO:X iy,

* We have Vi = N(Mx;;Z,, )

u=u_,+Atv._ +¢&
Vi =V, +G

— (the Greek letters denote noise terms)
 Stack (u, v) Into a single state vector

()3 1),

— which is the form we had above
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Constant acceleration *i~ N(D: 1%, 1%, )

« We have = N2,

u=u_,+Atv._ +¢&
V, =V, + Ata,; +¢;
q=a_;+ 5.3.
— (the Greek letters denote noise terms)
 Stack (u, v) Into a single state vector

(uy (1 At 0)(u)

MR HEE i

— which is the form we had above
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T velocity

position -

- pOosItion

Constant
Acceleration
Model
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Xi = N(Di—lxi—l;zdi]
Yi= N(Mixi;zmi)

Assume we have a point, moving on a line with
a periodic movement defined with a
differential eq:

Periodic motion

dzp
a2~ P

can be defined as

du (0 1\ _
dt_ 1 0 U =ou

with state defined as stacked position and
velocity u=(p, v) 26



Periodic motion X = N(Dy X124, )

Yi= N(I\/Iixi;Zmi)

d;u_ b u=38u
d \ -1 0 -

Take discrete approximation....(e.g., forward
Euler integration with At stepsize.)

du
U; — U;— At—
1+ 7

= u;—1 + AtSu;

(1 Aty
O\ -At 1 !
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Higher order models

 Independence assumption
Plx;|xy,...,xi—1) = P(x;|xi—1)

* Velocity and/or acceleration augmented position
» Constant velocity model equivalent to

P(p;|p1s--spi1) = N(pi—1 + (Pi_1 — Pi_5), Xa,)

— velocity == Pi—1 — Pi—2
— acceleration == (P;_1 — Pi_>) — (Pi_> — P;_3)
— could also use p;_, etc.
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The Kalman Filter

o Key ideas:
— Linear models interact uniquely well with Gaussian

noise - make the prior Gaussian, everything else
Gaussian and the calculations are easy

— Gaussians are really easy to represent --- once you
know the mean and covariance, you’re done

29



Recall the three main issues in tracking

¢ Prediction: we have seen yg,...,Y; what state does this set of mea-
surements predict for the ¢’th frame? to solve this problem, we need to obtain
a representation of P(X;|Yo=vyq,....Yi1 =Y, 1)

e Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P(X;|Yo =vyy,...,Yi—1 =
Yy, 1) to identify these measurements.

e Correction: now that we have y, — the relevant measurements — we need
to compute a representation of P(X;|Yo =1vyq,.... Y =y.).

(Ignore data association for now)
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The Kalman Filter

ah

Time Update Measurement Update
(“Predict’™) (*Correct™)

N

31
[figure from http://www.cs.unc.edu/~welch/kalman/kalmanintro.html]



The Kalman Filter in 1D

e Dynamic Model

| 9
I ~ i.'"u"[d,:_;f.-'.;_'_._ﬂ'ﬂ-]

(.

e Notation

2
Trka

Yy ~ N(m;xi, o

mean of P(X;|yg, ..., y;—1) as EF— Predicted mean
\ as X, «C d

mean of P(X;|yo,...,y;) asX; <« Corrected mean

the standard deviation of P(X;|yg, ..., yi—1) as o,

of P(Xi|yo;...,¥:) as o]

32



The Kalman Filter

Time Update Measurement Update
(“Predict’™) (*Correct™)

33



Prediction for 1D Kalman filter

°F

e The new state Is obtained by zi ~ N(dizi—1,0y,)

— multiplying old state by known constant
— adding zero-mean noise

* Therefore, predicted mean for new state Is
— constant times mean for old state

e Old variance 1s normal random variable

— variance is multiplied by square of constant
— and variance of noise is added.

X, =d;X, , (07)? =03, + (dic]~})?
34



Dvnamic Model:
xi ~ Nidizi_1,04)
Yi ~ N, Om, )

Start Assumptions: T, and o, are known
Update Equations: Prediction

T, T,
_ [ ; + 3
T \/ O, (dio,” )

35



The Kalman Filter

Time Update Measurement Update
(“Predict’™) (*Correct™)
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Correction for 1D Kalman filter

_ 2 g r— )2

E i O, T MY, )
i = 2 2 -2
T, T m;\o; )

:. r — % :I
| Om; \O; )7
T — ;
i i _] _:' .' — % 2 %
\T +m; a7

Notice:
— If measurement noise is small,
we rely mainly on the measurement,
— 1f it’s large, mainly on the
prediction
— o does not depend on y
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Dvnamic Model:
xi ~ Nidizi_1,04)
yi ~ N(miZi, Om, )

Start Assumptions: T, and o, are known
Update Equations: Prediction

—— —_—

T, T, -

_ [ = ; + 37
o \ o, + (dig )

Time Update Measurement Update
(*Predict™) (*Correct™)

—_— 1 — 2
- Ti Oy T~ Ml 0; )
‘Ez' o 2 —
T, — T L0 )7
2 fa—%2
n | 'ﬂ-m_. ) {:I'E. |
T ¢ 0 [ — 3
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Smoothing

ldea

— We don’t have the best estimate of state - what about
the future?

— Run two filters, one moving forward, the other
backward in time.

— Now combine state estimates

» The crucial point here is that we can obtain a smoothed
estimate by viewing the backward filter’s prediction as yet
another measurement for the forward filter

44



Forward estimates.
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Backward estimates.
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Combined forward-backward estimates.
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n-D

Generalization to n-D is straightforward but more complex.

48



n-D

Generalization to n-D is straightforward but more complex.

N

Time Update Measurement Update
(“Predict”) (“Correct™)

N
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n-D Prediction

Generalization to n-D is straightforward but more complex.

N

Time Update Measurement Update
(“Predict”) (“Correct™)

Prediction: v

o Multiply estimate at prior time with forward model:

— =t
x, =Dz 4

e Propagate covariance through model and add new noise:

2, =X, + @Wj—lﬂi 50



n-D Correction

Generalization to n-D is straightforward but more complex.

_

Time Update Measurement Update
(“Predict”) (“Correct™)

Correction: \_/

« Update a priori estimate with measurement to form a
posteriori




n-D correction

Find linear filter on innovations

T =7, + K|y, — MiE; ]

i

which minimizes a posteriori error covariance:

el bx-x T x|

K Is the Kalman Gain matrix. A solution is

=2 MT (M ME + S0,

52



Kalman Gain Matrix

i

T =7, + K|y, — MiE; ]

IC; = 57 MY (M MT + 5]

As measurement becomes more reliable, K weights residual
more heavily,

lim K. =M™

2, —0
As prior covariance approaches 0, measurements are ignored:

lIm Ki =0

2 —0 53



Dvnamic Model:

£y _'ﬂ"rrl_ﬂg'mf_l . "'.:-f |

y; ~ NiMizi, Xm, )

Start Assumptions: T, and ¥ are known
Update Equations: Prediction

Update Equations: Correction

Ki =Yy M{ [M;X; MT

T =T + K |y, - M

it = [Id — KoM, 57

s —1
E .-:In.
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox
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[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox
 MSE of filtered estimate is 4.9; of smoothed estimate. 3.2.

* Not only is the smoothed estimate better, but we know that it is better,
as illustrated by the smaller uncertainty ellipses

* Note how the smoothed ellipses are larger at the ends, because these
points have seen less data.

« Also, note how rapidly the filtered ellipses reach their steady-state
(“Ricatti”) values.

[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.htmi]



Data Association

In real world y; have clutter as well as data...

E.g., match radar returns to set of aircraft
trajectories.
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Data Association

Approaches:

* Nearest neighbours

— choose the measurement with highest probability given
predicted state

— popular, but can lead to catastrophe

e Probabilistic Data Association

— combine measurements, weighting by probability given
predicted state

— gate using predicted state

58
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Abrupt changes

What if environment is sometimes unpredictable?
Do people move with constant velocity?

Test several models of assumed dynamics, use the
best.
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Multiple model filters

Test several models of assumed dynamics

[figure from Welsh and Bishop 2001]



MM estimate

Two models: Position (P), Position+Velocity (PV)

— Cstimate
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[figure from Welsh and Bishop 2001]
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Smooth when still

ooo000 P Estimate
+++++ PV Estimate

++

+wh
+
+.|'!' A .o +
R | RPN, AL .wn. +-lr-|qu..|r +
TLF -I-M'IL MH ‘""1':0- i..|l- +,++ iﬁ'l"*
.|.

* '*"F+ﬂ' oy
+ %
+ W
+

2555
232 234 238 238 24 24.2
Time [scconds]

[figure from Welsh and Bishop 2001]



Resources

o Kalman filter homepage
http://www.cs.unc.edu/~welch/kalman/

o Kevin Murphy’s Matlab toolbox:

http://www.ai.mit.edu/~murphyk/Software/Kalman/k
alman.html
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Jepson, Fleet, and EI-Maraghi tracker

IEEE Conference on Computer Vision and and Pattern Recognition, Kauai, 2001, Vol. I, pp. 415422

Robust Online Appearance Models for Visual Tracking

Allan D. Jepson* David J. Fleet’ Thomas F. EI-Maraghi*

* Department of Computer Science, University of Toronto, Toronto, M5S 1A4
" Xerox Palo Alto Research Center, 3333 Coyote Hill Rd, Palo Alto, CA 94304
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Jepson, Fleet, and EI-Maraghi tracker

2B T O
2 . - ';'-t__ :;v.nf . ,_é_-;:
™~ ¥

Figure 4. The adaptation of the model during tracking. (top) The target region in selected frames 200, 300, 480. (bottom) The stable
component’s mixing probability (left) and mean (right) for the selected frames.
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Jepson,.Fleet, and EI-I\/Iaraghi.Ir.acker

LIPS

Figure 3. Each row shows, from left to right, the tracking region, the stable component’s mixing probability wre. (X, ¢), mean pa{x, £),
and ownership probability o.(x, #}. The rows correspond to frames 244, 259, 274, and 289, top to bottom. Note the model persistence

ard the dran 1 data cwamerehim within the s clinded reotan
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Figure 2. Estimation using on-line EM. (top) The original
data (thin red) with true state (dashed blue) and the esti-
mated mean of the stable process (thick black). The noise
is a mixture of Gaussian and uniform densities, with mix-
ing probabilities (0.9, 0.1), except for 15 frames at 300
which are pure outliers. (bottom) Mixing probabilities for
& (black), W (dashed red), and the £ (light green).
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Show videos
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