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6.869

Computer Vision and Applications

Prof. Bill Freeman

Tracking
– Density propagation
– Linear Dynamic models / Kalman filter 
– Data association
– Multiple models

Readings: F&P Ch 17
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Huttenlocher talk
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Schedule

• Thursday, April 28:  
– Kalman filter, PS4 due.

• Tuesday, May 3:  
– Tracking articulated objects, Exam 2 out

• Thursday, May 5:  
– How to write papers & give talks, Exam 2 due

• Tuesday, May 10:
– Motion microscopy, separating shading and paint (“fun 

things my group is doing”)

• Thursday, May 12: 
– 5-10 min. student project presentations, projects due.
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Tracking Applications

• Motion capture
• Recognition from motion
• Surveillance
• Targeting
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Things to consider in tracking

What are the
• Real world dynamics
• Approximate / assumed model
• Observation / measurement process



8

Density propogation

• Tracking == Inference over time
• Much simplification is possible with linear 

dynamics and Gaussian probability models
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Outline

• Recursive filters
• State abstraction
• Density propagation
• Linear Dynamic models / Kalman filter 
• Data association
• Multiple models
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Tracking and Recursive estimation

• Real-time / interactive imperative.
• Task: At each time point, re-compute estimate of 

position or pose.
– At time n, fit model to data using time 0…n
– At time n+1, fit model to data using time 0…n+1

• Repeat batch fit every time?
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Recursive estimation

• Decompose estimation problem
– part that depends on new observation
– part that can be computed from previous history

• E.g., running average:
at = α at-1 + (1-α) yt

• Linear Gaussian models: Kalman Filter
• First, general framework…
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Tracking

• Very general model:  
– We assume there are moving objects, which have an underlying 

state X
– There are measurements Y, some of which are functions of this 

state
– There is a clock

• at each tick, the state changes
• at each tick, we get a new observation

• Examples
– object is ball, state is 3D position+velocity, measurements are 

stereo pairs
– object is person, state is body configuration, measurements are 

frames, clock is in camera (30 fps)
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Three main issues in tracking
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Simplifying Assumptions
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Kalman filter graphical model

x1 x2 x3 x4

y1 y2 y3 y4
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Tracking as induction

• Assume data association is done
– we’ll talk about this later; a dangerous assumption

• Do correction for the 0’th frame
• Assume we have corrected estimate for i’th frame

– show we can do prediction for i+1, correction for i+1
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Base case
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Induction step

given



Update step

given
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Linear dynamic models

• A linear dynamic model has the form

• This is much, much more general than it looks, and extremely 
powerful

xi = N Di−1xi−1;Σdi( )
yi = N Mixi ;Σmi( )
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xi = N Di−1xi−1;Σdi( )Examples

• Drifting points
– assume that the new position of the point is the old one, 

plus noise
D = Id

yi = N Mixi ;Σmi( )

cic.nist.gov/lipman/sciviz/images/random3.gif 
http://www.grunch.net/synergetics/images/random
3.jpg
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Constant velocity           

• We have

– (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

– which is the form we had above

yi = N Mixi ;Σmi( )

xi = N Di−1xi−1;Σdi( )
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xi = N Di−1xi−1;Σdi( )Constant acceleration

• We have

– (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

– which is the form we had above

ui = ui−1 + ∆tvi−1 + ε i

vi = vi−1 + ∆tai−1 +ς i

ai = ai−1 + ξi
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Constant
Acceleration
Model
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Assume we have a point, moving on a line with 
a periodic movement defined with a 
differential eq: 

can be defined as 

with state defined as stacked position and 
velocity u=(p, v)

Periodic motion
yi = N Mixi ;Σmi( )

xi = N Di−1xi−1;Σdi( )
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xi = N Di−1xi−1;Σdi( )Periodic motion
yi = N Mixi ;Σmi( )

Take discrete approximation….(e.g., forward 
Euler integration with ∆t stepsize.)
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Higher order models

• Independence assumption

• Velocity and/or acceleration augmented position
• Constant velocity model equivalent to

– velocity ==
– acceleration ==
– could also use         , etc. 
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The Kalman Filter

• Key ideas: 
– Linear models interact uniquely well with Gaussian 

noise - make the prior Gaussian, everything else 
Gaussian and the calculations are easy

– Gaussians are really easy to represent --- once you 
know the mean and covariance, you’re done
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Recall the three main issues in tracking

(Ignore data association for now)
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The Kalman Filter

[figure from http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html]
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The Kalman Filter in 1D

• Dynamic Model

• Notation

Predicted mean

Corrected mean
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The Kalman Filter
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Prediction for 1D Kalman filter

• The new state is obtained by
– multiplying old state by known constant
– adding zero-mean noise

• Therefore, predicted mean for new state is
– constant times mean for old state

• Old variance is normal random variable
– variance is multiplied by square of constant
– and variance of noise is added.
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The Kalman Filter
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Correction for 1D Kalman filter

Notice:
– if measurement noise is small, 
we rely mainly on the measurement,
– if it’s large, mainly on the 
prediction
– σ does not depend on y
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Smoothing

• Idea
– We don’t have the best estimate of state - what about 

the future?
– Run two filters, one moving forward, the other 

backward in time.
– Now combine state estimates

• The crucial point here is that we can obtain a smoothed 
estimate by viewing the backward filter’s prediction as yet 
another measurement for the forward filter
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The o-s give state, x-s measurement.
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Combined forward-backward estimates.
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timeThe o-s give state, x-s measurement.
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n-D

Generalization to n-D is straightforward but more complex.
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n-D

Generalization to n-D is straightforward but more complex.
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n-D Prediction

Generalization to n-D is straightforward but more complex.

Prediction:
• Multiply estimate at prior time with forward model:

• Propagate covariance through model and add new noise:
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n-D Correction

Generalization to n-D is straightforward but more complex.

Correction:
• Update a priori estimate with measurement to form a 

posteriori
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n-D correction

Find linear filter on innovations 

which minimizes a posteriori error covariance:

K is the Kalman Gain matrix.  A solution is

( ) ( )⎥⎦⎤⎢⎣
⎡ −− ++ xxxxE

T
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Kalman Gain Matrix

As measurement becomes more reliable, K weights residual 
more heavily, 

As prior covariance approaches 0, measurements are ignored:
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[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]

2-D constant velocity example from Kevin Murphy’s Matlab toolbox
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox
• MSE of filtered estimate is 4.9; of smoothed estimate. 3.2. 
• Not only is the smoothed estimate better, but we know that it is better, 

as illustrated by the smaller uncertainty ellipses
• Note how the smoothed ellipses are larger at the ends, because these 

points have seen less data. 
• Also, note how rapidly the filtered ellipses reach their steady-state 

(“Ricatti”) values. 
[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]
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Data Association

In real world yi have clutter as well as data…

E.g., match radar returns to set of aircraft 
trajectories.
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Data Association

Approaches:
• Nearest neighbours

– choose the measurement with highest probability given 
predicted state

– popular, but can lead to catastrophe

• Probabilistic Data Association
– combine measurements, weighting by probability given 

predicted state
– gate using predicted state
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Red: tracks of 10 drifting points.  Blue, black: point being tracked
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Abrupt changes

What if environment is sometimes unpredictable?

Do people move with constant velocity?

Test several models of assumed dynamics, use the 
best.
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Multiple model filters

Test several models of assumed dynamics

[figure from Welsh and Bishop 2001]
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MM estimate

Two models: Position (P), Position+Velocity (PV)

[figure from Welsh and Bishop 2001]
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P likelihood

[figure from Welsh and Bishop 2001]
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No lag

[figure from Welsh and Bishop 2001]
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Smooth when still

[figure from Welsh and Bishop 2001]
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Resources

• Kalman filter homepage
http://www.cs.unc.edu/~welch/kalman/

• Kevin Murphy’s Matlab toolbox:
http://www.ai.mit.edu/~murphyk/Software/Kalman/k

alman.html



71

Jepson, Fleet, and El-Maraghi tracker
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Jepson, Fleet, and El-Maraghi tracker
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Add fleet&jepson tracking slidesJepson, Fleet, and El-Maraghi tracker
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Add fleet&jepson tracking slidesJepson, Fleet, and El-Maraghi tracker
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Show videos


	6.869
	Huttenlocher talk
	Huttenlocher talk
	Huttenlocher talk
	Schedule
	Tracking Applications
	Things to consider in tracking
	Density propogation
	Outline
	Tracking and Recursive estimation
	Recursive estimation
	Tracking
	Three main issues in tracking
	Simplifying Assumptions
	Kalman filter graphical model
	Tracking as induction
	Base case
	Induction step
	Update step
	Linear dynamic models
	Examples
	Constant velocity
	Constant acceleration
	Periodic motion
	Periodic motion
	Higher order models
	The Kalman Filter
	Recall the three main issues in tracking
	The Kalman Filter
	The Kalman Filter in 1D
	The Kalman Filter
	Prediction for 1D Kalman filter
	The Kalman Filter
	Correction for 1D Kalman filter
	Smoothing
	n-D
	n-D
	n-D Prediction
	n-D Correction
	n-D correction
	Kalman Gain Matrix
	2-D constant velocity example from Kevin Murphy’s Matlab toolbox
	
	Data Association
	Data Association
	
	
	Abrupt changes
	Multiple model filters
	MM estimate
	P likelihood
	No lag
	Smooth when still
	Resources
	Jepson, Fleet, and El-Maraghi tracker
	Jepson, Fleet, and El-Maraghi tracker
	Add fleet&jepson tracking slides
	Add fleet&jepson tracking slides
	Show videos

