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6.869 Advances in Computer Vision:
Learning and Interfaces

Spring 2005

Tuesday and Thursday, 2 30 to J:00pm in 36153
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« Problem Sets and Exans
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1 an Sumelntedaction . aggnas  PSoout
2 2/3 Image Filtering Req: FP7.1-7.6
Tmage
3 2/8 Representations:  Req FP==, 02
Pyramds
4 210 Image Statistics P50 due
& 2/15 Texture ET TF 5,93, F&1 out
& 217 Color Req: FP 6.1-6.4
I afx Guest Lecture
Context in vision
i oo
R
9 21 Multiview Geometry er:nhjc:_\'k and P&z out
Sehmid; FF 1o
10 /3 Local Features i'ﬂﬂ';':f.
Motivation for camera calibration:
relating image measurements to positions out in the world
Frames from video data Tracked feature points
Inferred 3-d shape of building
Translation and rotation
Let’'swritt Bp__ Bp 4 B
P="R “‘P+*0, |
as a single matrix equation:
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Homogenous coordinates

* Add an extra * Motivation
coordinate and use an — Possible to write the

equivalence relation action of a perspective
e for3D camera as a matrix

— equivalence relation
k*(X,Y,Z,T) is the
same as
(X,Y,Z,T)

Homogenous/non-homogenous
transformations for a 3-d point

» From non-homogenous to homogenous
coordinates: add 1 as the 4t coordinate, ie

» From homogenous to non-homogenous
coordinates: divide 1%t 3 coordinates by the

4 e x .
¥y 1
=
T z

Homogenous/non-homogenous
transformations for a 2-d point

» From non-homogenous to homogenous
coordinates: add 1 as the 3" coordinate, ie

» From homogenous to non-homogenous
coordinates: divide 1% 2 coordinates by the

34, e .
=N

Translation and rotation, written in
each set of coordinates

Non-homogeneous c%ordinateBs y 3
P="R “P+*0,

Homogeneous coordinates

tp=8c p
where B N - |
ool R - PO,
- = =1
0 0O 1

Perspective projection, in
homogenous coordinates

X
X 10 0 O
* Turn previous vl=lo 1 o o Y
expression into HC’s . z
Z 00 -0
— HC’s for 3D point are / % 1

X,Y,Z,T)
— HC’s for point in
image are (U,V,W) X (x
Y |—> ;( Y]
z
/
Cc

The projection matrix for orthographic
projection, in homogenous coordinates

X
UlOOOY
Vi={0 1 0 0

VA
1) 10 0 01
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Camera calibration

Use the camera to tell you things about the
world:

— Relationship between coordinates in the world
and coordinates in the image: geometric
camera calibration.

— (Relationship between intensities in the world
and intensities in the image: photometric
camera calibration, not covered in this course,
see 6.801 or text)

Intrinsic parameters: from idealized
world coordinates to pixel values

ap

. o X
Perspective projection u Zf*
z

N

z

Intrinsic parameters

ap

X

But “pixels” are in u=a—

some arbitrary spatial z
units

v=aZ

z

ap

X

Maybe pixels are not u=uo—
square z
vep?

z

Intrinsic parameters

ap

X
We don’t know the u=a—+u,
origin of our camera z
ixel coordinates
P v=, e Vo
z

ap

May be skew between X

camera pixel axes U =0 ——« cot(0) Y +u,
z z
v=— By v,
sin(@) z




Intrinsic parameters

|

I u:uzf—acot(ﬂ)lﬂl0
| z z
Wl Ll _/’7 R
sin(@) z
Using homogenous coordinates,
we can write this as: 7, a —acot(d) u, g *
— E 0 _ B , O y
_ z sin(6) z
.1 = =
p=- (k 0) P
z

Extrinsic parameters: translation
and rotation of camera frame

CP=,,§R WP+COW Non-homogeneous
coordinates

P v Homogeneous
Pl - SR —| o, P coordinates

Combining extrinsic and intrinsic
calibration parameters
p=2(k 0P

z

Intrinsic

cp c c p
P [ wR = TONP|  Extrinsic

Forsyth&Ponce

Other ways to write the same equation

pixel coordinates
world coordinates

- 1 ”/
==MP
z

NG u="ut
u m . P

1 T Wy 3
v =— my -
z T /8 m2~P
1 my V= =
1 my- P

z is in the camera coordinate system, but we ¢an

solve for that, since 1_ P | leading to:
Z

The Opti-CAL Calibration Target Image

http://www.kinetic.bc.ca/CompVision/opti-CAL.html

Camera calibration

From before, we had these equations m; P
u

relating image positions, m.- P
u,v, to points at 3-d positions P (in e
. . m,-P

homogeneous coordinates): v= =
my- P

So for each feature point, i, we have:
(my—u,m3)- B, =0
(m, —v,m;)-F, =0




Camera calibration

Stack all these measurements of i=1...n points
(my —u,my) 13, =0
(m, —v,my)- 131 =0

into a big matrix:

A 0
o' B —wr M) o

. . m, |=|:
P 0" —uPl | m,) |©
o’ PnT v P"T 0

In vector form{ & 0 4R 0 P
0 B -wR [m) |o Camera calibration
......... my, |=|
B0 -up {mj 0
(L 0
myy
Showing all the elements: my,
myy
B B, B 10000 —wh -wh -wh -—u),*
0000 R B A 1 -wh -wh -wA -y my,

P, P, P, 1000O0O0 -uP, -upP, -ulP, -u, |™s

i ny i nt nx nt ny nt nz

0000®R P, P 1 -vP -vP, -vP -v |

nx ny nz ! nx nt ny nt nz n

my
m, |Camera calibration
myy
B By B 10000 —wh -wh —wh —u )l (0
0000 R A A 1 -whR -wB -wh -w 0
Mz P
P, P, P, 10000 -uP, -uP, -uP -u |Ms| |0
0000 P B P 1-vP -vwB -vP -v )Ml (0
My,
my,
my
My,
Q m=0

We want to solve for the unit vector m (the stacked one)
that minimizes \Qm\z

The minimum eigenvector of the matrix QTQ gives us that
(see Forsyth&Ponce, 3.1)

Camera calibration

Once you have the M matrix, can recover the
intrinsic and extrinsic parameters as in
Forsyth&Ponce, sect. 3.2.2.

ar] —acotfr] +upr] oty — acotf, + g,

. #
M= .’K r] 4 vor] —,
sing = sin g
r: i

+ tol:

Image filtering

* Reading:
— Chapter 7, F&P

Take 6.341, discrete-time signal
processing

« If you want to process pixels, you need to
understand signal processing well, so
— Take 6.341
« Fantastic set of teachers:
— Al Oppenheim
— Greg Wornell
— Jae Lim
» Web page: http://web.mit.edu/6.341/mww/




What is image filtering?

» Modify the pixels in an image based on
some function of a local neighborhood of
the pixels.

Linear functions

 Simplest: linear filtering.
— Replace each pixel by a linear combination of
its neighbors.
* The prescription for the linear combination
is called the “convolution kernel”.

10| 5 |3 0/0]0
4/5 11 0/0.50 7
111 (7 01105
Local image data kernel Modified image data

10/ 5|3 Some function
451 —_— 7
11117
Local image data Modified image data
Convolution

f[m,n]=I®g=Zl[m—k,n—l]g[k,l]

Linear filtering (warm-up slide)

coefficient
-
j <)
D

0
Pixel offset

original

Linear filtering (warm-up slide)

[y
o

coefficient

0
Pixel offset

original Filtered

(no change)

Linear filtering

iy
o

coefficient

0
Pixel offset

original




shift

Linear filtering

5
S
5 03 ’)
sl -
Pixelooffset
original
Blur examples
8 5 2.4
I 8
impulse £
o 03 ”'
original Pixe|00ffset filtered

=
kS 1.0
8
b=
L
.
0
Pixel offset
original shifted
Blurring
5
8
ES
§ 0.3
0
Pixel offset
original Blurred (filter
applied in both
dimensions).
Blur examples
8 5 24
I k=
impulse £
o 0.3 | ' |
o ' , '
original Pixe|00ffset filtered

coefficient

8
edge IIII 4 ; 03 4
— J—I—I—I—I—”—l

original Pixelooffset filtered

Linear filtering (warm-up slide)

‘i:ﬁ ?

original




Linear filtering (no change)

2.0
| 1.0
0 0

original Filtered
(no change)

Linear filtering

2.0

(remember blurring)

5
8
ES
§ 0.3
0
Pixel offset
original Blurred (filter
applied in both
dimensions).

Sharpening example

17
11.2
8 |8 \
|
-0.25
0.3

original ) Sharpened
(differences are

accentuated; constant
areas are left untouched).

coefficient

0 0
original
Sharpening
2.0
JW - 0.33
’_'_'_”_L_'_‘
0 0
original 2232?12?9‘1
Sharpening

before after




Oriented filters

I
I ] [I l I"" Gabor filters at different
l l l [ “I[ scales and spatial frequencies

top row shows anti-symmetric
(or odd) filters, bottom row the

symmetric (or even) filters.

Linear image transformations

« In analyzing images, it’s often useful to
make a change of basis.

transformed image
—

F = Uf ~—— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

Self-inverting transforms

Same basis functions are used for the inverse transform

/

T

|

U—l
U+
|

U transpose and complex conjugate

An example of such a transform:

the Fourier transform

discrete domain
Forward transform

M-IN-1 —m'(k—’”ﬂ—”]
Flm,n]=Y>" fTk,le " "
k=0 1=0
Inverse transform
1 Mana ,,,,,(%,,'N")
fTk, 1] :M—N;;F[m,n]e

To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---

as a function of x,y for some
fixed u, v. We get a function
that is constant when (ux+vy)
is constant. The magnitude of
the vector (u, v) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the

direction
V|
e—m’(m +vy)
hd u
e




Hereuand v
are larger than
in the previous
slide.

i Lx+vy)

And larger still...

ti(ux+vy)

Phase and Magnitude

« Fourier transform of a real
function is complex
— difficult to plot, visualize
— instead, we can think of the
phase and magnitude of the
transform
« Phase is the phase of the
complex transform
* Magnitude is the
magnitude of the complex
transform

¢ Curious fact

— all natural images have
about the same magnitude
transform

— hence, phase seems to
matter, but magnitude
largely doesn’t

« Demonstration

— Take two pictures, swap the
phase transforms, compute
the inverse - what does the
result look like?

This is the
magnitude
transform
of the
cheetah pic

This is the
phase
transform
of the
cheetah pic
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This is the
magnitude
transform
of the zebra
pic

This is the
phase
transform
of the zebra
pic

Reconstruction
with cheetah
phase, zebra
magnitude

Reconstruction
with zebra
phase, cheetah
magnitude

Example image synthesis with
fourier basis.
16 images
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#1-arge . 1]
Do [258, 728

Frange £1000100, 0 6247
i 148, 248

18

e-007.0. 500
246, 18

82

R 0, 1)
Do (254, 2560

82

i Pt [1 -
Coms [198, 298]

1 Fange 0. 1)
Doms 7%, 258

97 Rngw I 50000, 1.7]

1. Fare 1, 1]
D [258, 738

136

2 Range 1 150008, 148
8, 258
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282

282

92 Range [} Fhe-005, 559
#1: Ranga 0. 1) o
Dims 56, 158 Dims 54, 286

1 Fraege 1)
[T

538

2 Faesge 1T 008,
O 0198, 2580

1088

2 Range B 9000518
1 Aange .1} "2t
Do [238, 758 Corma i35, 7240

2004

"R 0, 1)
D [256, 2560

2 Rasge [ To-004, 18
O E196, 2560

" Fang B,

¥ Range B 000558, 7.7
o [258, 2980 Dara 148,

1 Fange 0, )
Dim [256, 758

i Frange [0 600132, 84 9
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15366

1 Rang R, 1 2 Frangs RSETH. 1.1]
D [758, 358 o 234, 256

#3 Fange B 0O10R. 108
Oa 158, 2580

2 Frange RLOOTS. 198
i 138, 350

65536.

T Range j8 d3e-015, 195
Owna 138, 256

Fourier transform magnitude

Masking out the fundamental and
harmonics from periodic pillars

14



Name as many functions as you
can that retain that same
functional form in the transform
domain

canahul inspac possile y 5 0 |
Dbsarvant resders may also hare roted that an exprrsscn for
cxomiining two ines of s b

Forsyth&Ponce

Discrete-time, continuous frequency Fourier transform

S

Many sequences can be represented by a Fourier integral nfllle’for:n_

o
x[n) = %j_x X(e'™)ei ™ de, (2.133)
where
@
X(e™) = 3 xlnje, (2.134)
a0
Oppenheim,
Schafer and
Buck,

Discrete-time
signal processing,
Prentice Hall,
1999

Discrete-time, continuous frequency Fourier transform pairs

TABLEZ3 FOURIER TRANSFORM PAIRS

Seqacnes Fourier Transform
L. &n] 1
2 & —m £ oy
L1 (meowmeos) 3 et e+ 2k
el
1

4 a*ufu] (lal <1)

5 uln]

& {m 4 1a"ufn] Dl < 1)

n 1
AL = o
Oppenheim, e { 1. il
Schafer and 0, o jel 5w
Buck, % afo] = {‘ll 0 ; nx M sinfel M+ D2z
Discrete-time e ofe/Z)
signal processing, 10 gl 3 b 20
Prentice Hall,
1999 1. cosfwen +8) 3 e — -+ k) 4 e g 4 2]

SN/ transform pairs,

Bracewell’s pictorial dictionary of Fourier

S e Ll
—] bt N 1t - B
-l I s /‘\ .
\YRRY, il \
! i
. _ I'.J' \
TIEE
I

Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978

Why is the Fourier domain
particularly useful?
* It tells us the effect of linear convolutions.

15



Fourier transform of convolution

Consider a (circular) convolution of g and h

f=g®h

Fourier transform of convolution
f=g®h

Take DFT of both sides

F[m,n]=DFT(g ®h)

Fourier transform of convolution

S=g®h
Fm,n]=DFT(g®h)

Write the DFT and convolution explicitly

M-1N-1 ,,,,-[ﬂﬂj

F[m,n]: ZZZg[u—k,v—l]h[k,l]e

u=0 v=0 &,

Fourier transform of convolution
f=g®h
F[m,n]= DFT(g@h)

Fm.n]= ZZZg[u kv —[Vilk, e

=0 v=0 k.

(w \/1

Move the exponent in

:MZ“NZZg[u k,v— l]e [ﬁ W]h[k 1

Fourier transform of convolution

f=g®h
Flm,n]= DFT(g@h)

Flm,n]= ZZZg[u kov—1h[k, e (55
\41\41 ‘77\

722287[” kv=lle M Vplk.1

=0 v=0 k[

Change variables in the sum

M—k-1N-I-1 .[(k+/l)m+(1+u)nj
S Naluole N hlk]
u=—k v=-1 ki

Fourier transform of convolution

f=g®h
F[m n] DFT(g@h)

Flm.n] zzzg[u e,y =1Lk, l]e’”LTT‘C]

:ZZZg[u k,v=1le ‘" v h[k,l]
u=0 v=0 k,
ksl (110l

ﬁfmeMw%“**ﬁwn

—k 1

Perform the DFT (circular boundary conditions)
(km In

=¥ dlm, n]eim[VWJh[k, i
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Fourier transform of convolution
=g®h
I'!Em n]= DFT(g@h)

Flm,n]= ZZZg[u kv—Ik, [ (5%

M 1 N 1 ,m[,,

ZZZg[u kyv-lle M ”)h[k i
=0 v: kil

M—k-AN-I-1 +)m (1o)n

Z Zg[u e s ]h[k n

=k v=1I

= &

A |
Glm, n]e ]h[k,l]

kil

Perform the other DFT (circular boundary conditions)

= G[mn}H[mn]

Analysis of our simple filters

Analysis of our simple filters

2
8
h t h
original Pix®l offset Filtered
(no change)
M-1N-1 (""’ '”)
F[m,n]= ZZf[k l]e
k=010 constant
0
RN

0

Analysis of our simple filters

§

Pixel offset
original shifted
M-1N-1 (km In]
Flm,n]=Y>" fTk-5, Ne
%=0 1=0 Constant
magnitude,
s 10 Iingarl shifted

e PhaSE
0

AnalyS|s of our simple filters

%

SQ‘ﬁ
Pixel offset

original blurred
M-1N-1 (km In]
Flm,n]= ZZf[k l]e
k=0 =0 Low-pass
filter
~ 14 2c0d ™ N
3 M Yy

Analysis of our simple filters

h 033

original sharpened
M-1N-1 [km InJ
F[m n] kzt;;):f[k l]e high-pass filter
2.3
1 m
=2—-—-|1+2cos| —
3( EM JJ M

0
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Sampling and aliasing

Sampling in 1D takes a continuous function and replaces it with a
vector of values, consisting of the function’s values at a set of
sample points. We’ll assume that these sample points are on a
regular grid, and can place one at each integer for convenience.

o

Sampling in 2D does the same thing, only in 2D. We’ll assume that
these sample points are on a regular grid, and can place one at each
integer point for convenience.

A continuous model for a
sampled function

« We want to be able to
approximate integrals

sensibly

* Leadsto
— the delta fugcti . v\ P
" ot on 1Bl (/(x)= 2 3% /0706y -)
= 1Y Y Sl =iy ))

The Fourier transform of a
sampled signal

FSample, (f(x,7)))= F(f(w) > Y o i,yfj)j

=—m =0

AU y))**F(,i 2 Sx—i, y*j)J

e

=2 iF(u—i,v—j)

== j=-0

Fouricr

leanlorm Magaitusde
Sl —_— Epcetrum
Samph Copy and
Shift

Sampled  Fousier

Signal Trasslorm Magaitwds
- Spectrum
JI

Cul oull by
multiplication
with box filter

Magnitude
Spectrum

18



Fowrier

N “Transform Magnitiale
Signal _— Spedtrum
Sample gy and
suilt

Sampled  Fowier

; Magninale
Sigrasl Tramborms L
. e Spectrum
= /Xm\ -

Cut cun by
muiplication
withs b filr

Magnitde
Spedrum

Inaccurately Inverse

Reconstructed Fourier
Ngmal Trandorm
-—

Aliasing

 Can’t shrink an image by taking every second
pixel
* If we do, characteristic errors appear
— In the next few slides
— Typically, small phenomena look bigger; fast
phenomena can look slower
— Common phenomenon
» Wagon wheels rolling the wrong way in movies
« Checkerboards misrepresented in ray tracing
« Striped shirts look funny on colour television

Resample the
heckerboard by taking
ne sample at each circle.
n the case of the top left
oard, new representation
s reasonable.

Top right also yields a

reasonable representation.
Bottom left is all black
dubious) and bottom
ight has checks that are
00 big.

Constructing a pyramid by
taking every second pixel
leads to layers that badly
misrepresent the top layer

Smoothing as low-pass filtering

e The message of the FTis o A filter whose FT is a

that high frequencies lead box is bad. because the
to trouble with sampling. filter kernél has

* Solution: suppress high infinite support
frequencies before .
sampling e Common solution: use

— multiply the FT of the a Gaussian
signal with something — multiplying FT by
that suppresses high Gaussian is equivalent
frequencies to convolving image
— or convolve with a low-pass with Gaussian.
filter

Sampling without smoothing. Top row shows the images,
sampled at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16
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i i i the images. We
ampling with smoothing. Top row §hows i v o )
Set tﬁe ngext image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to g_et the next; bottom row
shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16

I
!
g

-
sl B 0 4

i i i the images. We

ling with smoothing. Top row shows i v o )
gS;:tn:Ee n%xt image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to g_et the next; bottom row
shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16

T

Thoyght problem
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Thought problem
Analyze crossed
gratings...

Thoyght problem

Analyze crossed

ratings. ..
9 "":i¢4¢¢;;;,,,,,“:”memw”
mm”:”'muww::”"'mwmm;:'
Where does "W¢fm:""“"'Wm¢u""'“’WNm/;"”’“um
X it g 1! Wi b
e | - —
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m i
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R
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M

I i

i
/ 1 I,

T

| (i f
':"”mmu::””"WWEW
. L b
« o
F(A)**F(B)
I i \
'¢f?5$3:3::""'~35$$$$$"W \
i "””Ww i \
it =
C
Lowpass(F(A)**F(B))

~=F(C)

F(B)

F(A)**F(B)

What is a good representation for
image analysis?
* Fourier transform domain tells you “what”
(textural properties), but not “where”.

« Pixel domain representation tells you
“where” (pixel location), but not “what”.

» Want an image representation that gives
you a local description of image events—
what is happening where.
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Image pyramids

The Gaussian pyramid

Smooth with gaussians, because

— a gaussian*gaussian=another gaussian
Synthesis

— smooth and sample

* Analysis

— take the top image

 Gaussians are low pass filters, so repn is
redundant

The Laplacian Pyramid

* Synthesis
— preserve difference between upsampled
Gaussian pyramid level and Gaussian pyramid
level
— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other
levels
* Analysis
— reconstruct Gaussian pyramid, take top layer

512 256 128 64 32 16 8

22



Oriented pyramids

« Laplacian pyramid is orientation
independent

 Apply an oriented filter to determine
orientations at each layer

— by clever filter design, we can simplify
synthesis

— this represents image information at a particular
scale and orientation

Laplacian Pyramd Onented Pyramid

Filter Kemnels

Coarsest w:lkﬂ

Image

Finest scale

Reprinted from “Shiftable Multi! i ,” by Si i etal., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE




