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Readings: Mean shift paper and background
segmentation paper.

e Mean shift IEEE PAMI paper by Comanici and
hﬂeer

. Forsyth&Ponce Ch. 14, 15.1, 15.2.

« Wallflower: Principles and Practice of
Background Maintenance, by Kentaro Toyama,
John Krumm, Barry Brumitt, Brian Meyers.



http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

The generic, unavoidable problem with
low-level segmentation and grouping

* It makes a hard decision too soon. We want to
think that simple low-level processing can
Identify high-level object boundaries, but any
Implementation reveals special cases where
the low-level information is ambiguous.

e So we should learn the low-level grouping
algorithms, but maintain ambiguity and pass
along a selection of candidate groupings to
higher processing levels.



Segmentation methods

Segment foreground from background
K-means clustering

Mean-shift segmentation

Normalized cuts



A simple segmentation technique:
Background Subtraction

 |f we know what the * Approach:

background looks like, — Uuse a moving average
It IS easy to identify to estimate background
“Interesting bits” IMmage
. Applications — subtract from current
_ _ frame
— Person in an office
_ — large absolute values
— surveillance e trick: use morphological

operations to clean up
pixels



Movie frames from which we want to extract the foreground subject
(the textbook author’s child)
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2 different background removal models

Background estimate Foreground estimate Foreground estimate

Average over frames

high thresh




Static Background Modeling
Examples

[MIT Media Lab Pfinder / ALIVE System]



Static Background Modeling
Examples

[MIT Media Lab Pfinder / ALIVE System]



Static Background Modeling
Examples

[MIT Media Lab Pfinder / ALIVE System]



Dynamic Background

BG Pixel distribution Is non-stationary:

[MIT Al Lab VSAM]



Mixture of Gaussian BG model

Staufer and Grimson tracker:
Fit per-pixel mixture model to observed distrubution.
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Wallflower: Principles and Practice of Background Maintenance

Kentaro Tovama, John Krumm, Barry Brumitt, Brian Mevers
Microsoft Research
Redmond, WA 98052

{ kentoy|jckrumm|barry|brianme } @microsoft.com

Abstract
Background maintenance is a frequent element of video
surveillance systems. We develop Wallflower, a three-
component system for background maintenance: the pixel-
level component performs Wiener [filtering to make
probabilistic predictions of the expected background, the

region-fevel component fills in homogeneous regions of

Jforeground objects; and the frame-level component detects
sudden, global changes in the image and swaps in better
approximations of the background.

We compare our syvstem with & other background
subtraction algorithms. Wallflower is shown fo ouiperform
previous aloorithms by handling a greater set of the
difficult situations that can occur.

Finally, we analvze the experimental results and
propose normative principles for backeground maintenance.

1. Introduction

Wideo surveillance systems seek to automatically

http://research.microsoft.com/users/toyama/wallflower.pd

Bootstrapping: A training period absent of foreground
objects is not available in some environments.
Foreground aperture: When a homogeneously colored
object moves, change in the interior pixels cannot be
detected. Thus, the entire object may not appear as
foreground.

Sleeping person: A foreground object that becomes
motionless cannot be distinguished from a background
object that moves and then becomes motionless.

Waking person: When an object initially in the
background moves, both it and the newly revealed parts
of the background appear to change.

Shadows: Foreground objects often cast shadows which
appear different from the modeled background.

No perfect system exists. In this paper, we hope to
further understanding of background maintenance through a
threefold contribution: In the next section, we describe
Wallflower, a background maintenance algorithm that
attempts to address many of the problems enumerated.



Background removal Issues

modeling process background mainfenance. An  ideal
background maintenance system would be able to avoid the
following problems:

Moved objects: A background object can be moved.
These objects should not be considered part of the
foreground forever after.

Time of day: Gradual illumination changes alter the
appearance of the background.

Light switch: Sudden changes in illumination and other
scene parameters alter the appearance of the background.
Waving trees: Backgrounds can wvacillate, requiring
models which can represent disjoint sets of pixel values.
Camouflage: A foreground object’s pixel characteristics
may be subsumed by the modeled background.

http://research.microsoft.com/users/toyama/wallflower.pd

Bootstrapping: A training period absent of foreground
objects is not available in some environments.
Foreground aperture: When a homogeneously colored
object moves, change in the interior pixels cannot be
detected. Thus, the entire object mav not appear as
foreground.

Sleeping person: A foreground object that becomes
motionless cannot be distinguished from a background
object that moves and then becomes motionless.

Waking person: When an object initially in the
background moves, both it and the newly revealed parts
of the background appear to change.

Shadows: Foreground objects often cast shadows which
appear different from the modeled background.

No perfect system exists. In this paper, we hope to
further understanding of background maintenance through a
threefold contribution: In the next section, we describe
Wallflower, a background maintenance algorithm that
attempts to address many of the problems enumerated.



Background Subtraction Principles

Wallflower: Principles and Practice of Background Maintenance, by Kentaro
Toyama, John Krumm, Barry Brumitt, Brian Meyers.

Semantic differentiation of objects should not be

P1: -
handled by the background maintenance module.

Background subtraction should segment objects
of interest when they first appear {or reappear) in

d SCCNC.

P2:

P3| An appropriate pixel-level stationarity criterion
should be defined. Pixels that satisty this criterion
are declared background and ignored.

P4l The background model must adapt to both sudden
and gradual changes in the background.

P5:1 Background models should take into account
changes at differing spatial scales.




Background Technlqueg Compared
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Segmentation as clustering

Cluster together (pixels, tokens, etc.) that belong
together...

Agglomerative clustering
— attach closest to cluster it is closest to
— repeat

Divisive clustering
— split cluster along best boundary
— repeat
Dendrograms
— yield a picture of output as clustering process continues



Greedy Clustering Algorithms

Algorithm 15.3: Aggomerative clustering, or clustering by merging

Iake each point a geparate cluster
Tntil the clustering iz satisfactory
Ilerge the two clusgters with the
smallest inter-cluster distance
end

Algorithm 15.4: Divisive clustering, or clustering by splitting

Congtruct a gingle cluster containing all pointe
TIntil the clustering is satisfactory
oplit the clusgter that yields the two
components with the largest inter-cluster distance
end




Data set

distance

123456
Dendrogram formed by
agglomerative clustering
using single-link
clustering.



Segmentation methods

« K-means clustering



K-Means

e Choose a fixed number of « Algorithm

clusters — fix cluster centers; allocate
points to closest cluster

— fix allocation; compute best

 Choose cluster centers and cluster centers

point-cluster allocations to x could be any set of

minimize error :
_ features for which we can
* can’t do this by search, compute a distance

because there are too (careful about scaling)
many possible lallocations.

2 > fe-ul

I eclusters | j eelements of i'th cluster



K-Means

Algorithm 15.5: Clustering by K-Means

Chooge & data pointa to act ag cluster centers
TTntil the cluster centers are unchanged
Allocate each data point to clugter whozse center iz nearest
Meow ensure that every cluster hag at leagt
onhe data point: possible techniques for doing thiz include .
supplyving empty clusters with a point chogen at random from
pointe far from their cluster center,
Eeplace the cluster centers with the mean of the elements
in their clusters.
et




Matlab k-means clustering demo



Image Clusters on intensity (K=5) Clusters on color (K=5)

K-means clustering using intensity alone and color alone



Clusters on color

K-means using color alone, 11 segments



K-means using
color alone,
11 segments.

Color alone
often will not
yeild salient segments!




Ways to include spatial relationships

(a) Define a Markov Random Field (MRF),

where the state to be estimated
segment index. Solve by grap

Includes the
N cuts or BP.

(b) Augment data to be clusterec
coordinates. Y\~

L=|vy |
X

Y/

with spatial

U | ~color coordinates

~spatial coordinates



K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing segmentation!

Hard to pick K...




Segmentation methods

* Mean-shift segmentation



Mean Shift Segmentation

Segmented "landscape 17 Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



Mean Shift Algorithm

Mean Shift Algorithm

Choose a search window size.

Choose the initial location of the search window.

Compute the mean location (centroid of the data) in the search window.
Center the search window at the mean location computed in Step 3.
Repeat Steps 3 and 4 until convergence.

ahkhwbhE

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:
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Mean Shift Segmentation

Mean Shift Segmentation Algorithm

ahwbhE

Convert the image into tokens (via color, gradients, texture measures etc).
Choose initial search window locations uniformly in the data.

Compute the mean shift window location for each initial position.

Merge windows that end up on the same “peak” or mode.

The data these merged windows traversed are clustered together.

o o o
> » o -

NORMALIZED DENSITY
o

u 40 u 40

*Image From: Dorin Comaniciu and Peter Meer, Distribution Free Decomposition of Multivariate
Data, Pattern Analysis & Applications (1999)2:22-30



* For your homework, you will do a mean
shift algorithm just in the color domain. In
the slides that follow, however, both spatial
and color information are used Iin a mean
shift segmentation.
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(c) (d)

Fig. 4. Visualization of mean shift-based fitering and segmentation for gray-level data. (a) Input. (b) Mean shift paths for the pixels on the plateau and
on the line. The black dots are the points of convergence. (c) Filterng result (%, &, ) = (8,4). (d) Segmentation result.

Comaniciu and Meer, IEEE PAMI vol. 24, no. 5, 2002



Window in image dom_ain Apply mean shift jointly in the image
| (left col.) and range (right col.) domains

Intensities of pixels within
|ma|qe domiln ﬁ!ndow @

Center of mass of pixels within
both image and range domaln O ” r ” 1
r"m"i.'l,- - P 'I.I.I
. F : ';'i.".::':' f"J.I 1]
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Window in
range domain

Center of mass of pixels within
both image and range domain

windows
®
1'._r'h‘_ ! T 1
o . (1)




Mean Shift color&spatial Segmentation Results:
Ay =

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



Mean Shift color&spatial Segmentation Results:

Ongmal "fagaras™ Segmented




Segmentation methods

e Normalized cuts



Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image
V:image pixels

E: connections between
pairs of nearby pixels




Graphs Representations

. 01001
b 10000

-0 00001
e 00001

; 10110

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Weighted Graphs and Their
Representations

N & ~h O B+
~N OO O ~ W

00
00
6
0
1

0
1
3
00
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Weight Matrix

O N N8
l |




Boundaries of image regions defined
by a number of attributes

— Brightness/color

— Texture

— Motion

— Stereoscopic depth

— Familiar configuration

[Malik]



Measuring Affinity

Intensity

A () exp{_( %05)@ (x)- mxz)}
Distance

aff (x,y)= exp{ 202 j(|x I )}
Color

aff (x,y)= exp{—( 203) @C(X)— c(y) )}



Eigenvectors and affinity clusters

 Simplestidea: wewanta e This is an eigenvalue

vecto_r a_giving the problem (p. 321 of
association between each Forsyth&Ponce)
element and a cluster

« We want elements within - choose the
this cluster to, on the eigenvector of A with
whole, have strong affinity largest eigenvalue

with one another
 We could maximize
a' Aa
e But need the constraint

a'a=1



Example eigenvector

points

matrix

s

1 =1

eigenvector
%HM‘J
5 10 T 20 o5 )




Example eigenvector

points

matrix

s

1 =1

eigenvector




Scale affects affinity




Some Terminology for Graph
Partitioning
 How do we bipartition a graph:

A -— (Cut B

Cut(A,B)= > W(u,v),  assoc(AA)= > W(u,y)

ueAveA'

ueA,veB

. A and A'not necessarily disjoint
withAnB=J ya




Minimum Cut

A cut of a graph G is the set of
edges S such that removal of
S from G disconnects G.

Minimum cut is the cut of
minimum weight, where
weight of cut <A,B> Is given
as

W« A B>) - ZXEA,yeB W(X’ y)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Minimum Cut and Clustering




Drawbacks of Minimum Cut

 Weight of cut Is directly proportional to the
number of edges In the cut.

ooo |0 o .

Cuts with
o0 O ® lesser weight
000 than the
/ e |\ O ideal cut

Ideal Cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003




Normalized cuts

First eigenvector of affinity
matrix captures within cluster
similarity, but not across cluster
difference

Min-cut can find degenerate
clusters

Instead, we’d like to maximize
the within cluster similarity
compared to the across cluster
difference

Write graph as V, one cluster as
A and the other as B

 Minimize
cut(A,B) N cut(A,B)
assoc(A,V) assoc(B,V)

where cut(A,B) is sum of weights
with one end in A and one end
In B; assoc(A,V) is sum of all
edges with one end in A.

l.e. construct A, B such that their
within cluster similarity is high
compared to their association
with the rest of the graph



Solving the Normalized Cut problem

o Exact discrete solution to Ncut is NP-complete
even on regular grid,
— [Papadimitriou’97]

« Drawing on spectral graph theory, good

approximation can be obtained by solving a
generalized eigenvalue problem.

[Malik]



Normalized Cut As Generalized
Eigenvalue problem

NcutA,B)=

CU‘(A,B) N CU‘(A,B) Dii :ZAJ-
asso€AV) asso(B,V) .
_@+)'0-W)A+Y) (@9 (D-W)a-x) | hIne (1)
- ki' DL @-krot " > D()

after simplification, Shi and Malik derive

T —_—
NCut(A B)=~ (?Dw)y, withy. e{L,—b},y" DL=0.
y' Dy

[Malik]



Normalized cuts

» Instead, solve the generalized eigenvalue problem

max, (y" (D —W )y)subject to (y" Dy =1)
* which gives

(D-W)y = ADy

« They show that the 2"d smallest eigenvector solution y is a good real-
valued appox to the original normalized cuts problem. Then you look for
a quantization threshold that maximizes the criterion --- i.e all
components of y above that threshold go to one, all below go to -b

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



Brightness Image Segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



Brightness Image Segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



Results on color segmentation

htto://www.cs.berkelev.edu/~malik/papers/SM-ncut.pdf



Nice web page on grouping from Malik’s group.
©J Grouping and Ecological Statistics - Mozilla Firefox = |8
Eile Edit Wiew Go  Bookmarks  Tools  Help 0

- r:- - r I|_| http:Il'll'www.c;.herkelev.edu,I'prDjectsI\fisian’grDuping,l' v/ @ Go |I§‘v
L 1 d

" Getting Started l:,' Latest Headlines

Grouping and Ecological Statistics

"l stand at the window and see a house, trees, sky. Theoretically | might
say there were 327 brightnesses and nuances of colour. Do | have
"327"? No. | have sky. house, and trees.” --Max Wertheimer

Overview:

The phenomenon of visual grouping was first highlighted by the Gestalt school of visual perception led by Max
Wertheimer, nearly a century ago. In computational wision, this ability has been studied as "image segmentation”, the
partitioning of an image [or video stream) into sets of pixels that correspond to "objects" or parts of objects. This
process is based on bottom up cues such as similarity of pixel brightness, color, texture and motion as well as top
dowen input derived from familiar object categories such as faces. Our research is aimed at developing a scientific
understanding of grouping, bath in the context of human perception and for computer vision. Key contributions
include:

+ A large dataset of natural images that have been segmented by human observers. This dataset, available
[here], serves as ground truth for learning grouping cues as well as a benchmark for comparing different
segmentation and boundary finding algorithms.

+ Computational models of low level cues such as brightness, color, texture and motion, inspired by v

Done




9 Mozilla Firefox

File Edit \iew Go Bookmarks Tools  Help o
<:| - = @ @ L1 htkpsf e cs berkeley. edufprojects/visionfgrouping) seqbench/BS03S 300/ htmlfdat asetfimagesfcalorf 101035 hkml v @ o GL

> Getting Started 5 Latest Headlines

Berkeley Segmentation Dataset: Test Image #101085 [color]

5 Color Segmentations

Sk — ] = Contains a large
\ [ '- dataset of images
with human
“ground truth”
labeling.

- .2 " M AT "_g'-'—"; 5

S e
: ! ff_‘—\\ 26 Seoments %




Qﬂ - [_:;) - @ |:f| @ ||_| http:f i, cs.berk Vl O so |@,

, Getting Started E._;l Latest Headlines

e B T _'.'-':'-"__" : [ Tser #1105 e
._ u! j 26 Segments
1 O e
Of course, the
human labelings
differ one from
Teer #1107 another

| 61 Segments

Tser #1108
41 Segments




Line Fitting

* Hough transform
e |terative fitting



Fitting

e Choose a parametric e Three main questions:
object/some objects to — what object represents this
represent a set of tokens set of tokens best?

« Most interesting case is — which of several objects

gets which token?

— how many objects are
there?

when criterion i1s not local

— can’t tell whether a set of
points lies on a line by

looking only at each point _ _

and the next. (you could read line for object
here, or circle, or ellipse
or...)



Fitting and the Hough Transform

Purports to answer all three » Different choices of 6, d>0 give
questions different lines
— in practice, answer isn’t e Forany (X, Yy) there is a one
usually all that much help parameter family of lines

We do for lines only through this point, given by

A line is the set of points (X, y)

such that (sin@)x +(cos@)y+d =0
(sin@)x +(cos@)y+d =0 « Each point gets to vote for each

line in the family; if there is a
line that has lots of votes, that
should be the line passing
through the points



0

tokens
Votes for parameter values
satisfying (sin@)x +(cos@)y +d =0
at each token



Mechanics of the Hough transform

Construct an array How many lines?
representing 6, d — count the peaks in the

For each point, render the Hough array |
curve (6, d) into this array, * Who belongs to which

adding one at each cell line?
Difficulties — tag the votes
— how big should the cells be? _ _
(too big, and we cannot e Problems with noise and
distinguish between quite cell size can defeat it

different lines; too small,
and noise causes lines to be
missed)
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Maximum number of votes

12

11

10

40

1] £ 100 120 140

Number of noise points

160

180

2m



Rules of thumb for getting Hough
transform to work well

o Can work for finding lines in a set of edge
points.

e Ensure minimum number of irrelevant
tokens by tuning the edge detector.

e Choose the quantization grid carefully by
trial and error.



Line fitting

What criteria to optimize when fitting a line to
a set of points?



“Least Squares”

Line fitting can be max.
likelthood - but choice of
model Is important

“Total Least Squares”



Who came from which line?

e Assume we know how many lines there are
- but which lines are they?

— easy, If we know who came from which line

o Three strategies
— Incremental line fitting
— K-means (described in book)

— Probabilistic (in book, and in earlier lecture
notes)



Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is too large

Put all points on curve list. in order along the curve
Empty the line point list
Empty the line list
Until there are too few points on the curve

Transter first few points on the curve to the line point list

Fit line to line point list

While fitted line 1s good enouch

Transfer the next point on the curve
to the line point list and refit the line

1l

Transter last point(s) back to curve

Refit line

Attach line to line list
1l




Incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is toao large

Put all points on curve list, in order along the curve o
Empty the line point list
Empty the line list
Until there are too few points on the curve
Transfer first few points on the curve to the line point list
Fit line to line point list
o

While fitted line is good enough

Transfer the next point on the eurve ®
to the line point list and refit the line

end

Transfer last point(s) back to curve

Refit line

Attach line to line list

end




Incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is toao large

Put all points on curve list, in order along the curve L
Empty the line point list
Empty the line list
Until there are too few points on the curve
Transfer first few points on the curve to the line point list
Fit line to line point list
While fitted line is good enough [

Transfer the next point on the eurve ®
to the line point list and refit the line
end
Transfer last point(s) back to curve
Refit line
Attach line to line list
end




Incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is toao large

Put all points on curve list, in order along the curve L
Empty the line point list
Empty the line list
Until there are too few points on the curve
Transfer first few points on the curve to the line point list
Fit line to line point list
While fitted line is good enough (]

Transfer the next point on the eurve ®
to the line point list and refit the line
end
Transfer last point(s) back to curve
Refit line
Attach line to line list
end




Incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is toao large

Put all points on curve list, in order along the curve
Empty the line point list
Empty the line list
Until there are too few points on the curve

Transfer first few points on the curve to the line point list

Fit line to line point list

While fitted line is good enough

Transfer the next point on the eurve
to the line point list and refit the line

end

Transfer last point(s) back to curve

Refit line

Attach line to line list
end




Incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is toao large

Put all points on curve list, in order along the curve
Empty the line point list
Empty the line list
Until there are too few points on the curve

Transfer first few points on the curve to the line point list

Fit line to line point list

While fitted line is good enough

Transfer the next point on the eurve
to the line point list and refit the line

end
Transfer last point(s) back to curve
Refit line
Attach line to line list
end




Fitting contours

WO common techniques:
— Snakes (Terzopolous, Witkin, and Kass)
— Dynamic programming methods



Structural Saliency: The Detection of Globally Salient
Structures Using a Locally Connected Network

Amnon Sha'ashoa

Hhimon Ullman

Departiment of Applied Malhematies
The Welzmann Institute of Sclence
Ttehovot T0100 Isract

Abstract

When we look ok images, cortais aalient atructuren afton atiract
cur mmediate attenlics, withaut requiring o systematie scan of

the embire bmage, [n pebsequent stages, processing CesOUToes Can
he alloceted peeferentially to thess saliend structures. In many

cagsa thia saliency is a property of the structure as a whale, Le.,
parts of the strecturs are pol salient in jsalatios,

I= dhis paper we preseat @ saliency measure based oo cur-
vatire aped corvataee varistion. The structures this meesure
amphigizes nre also salient in human perception, and they often
eorrespend to sbjects of intzreat in the image.

We prasent & method for computing the saliency by a sim-
ple iterative mehamea, vaing & wnifcem netwark af locally coms
nected processing clements. The astwork tses an spiimigation
approsch to prodoce o "saliency map”, which is  ropresssitaticn
af the tnage emphaaiziog sallent leatices. The main properties
af the network are: (5) the computations are simple and facal,
{ii) globally salisnt slreetites snbesgn with a seoall numbas of it-
ecatband, [ill) 22 & by-producs of the computasion contours are
smoathed, and gups ore Blledsin.

1. Introduction

Zalisnt atructures can often be perceived in a8 imags ab &
glancn, They appans ba atleast sur atbintios withaut the need to
weat thi entine imoge in a systematic manper, and wichout prioc
expecistions regarding their shape, The processes invelved in
the perception of safient atructures appear to play & neefol rebs in
segmentation af:l fecognbtlen, since they allow ua to immedistely
erncanirtats on abjecta of interest in the image.

Copaider the imsges lo figures 1, 2 snd 5. Certain objects
iE each image scmehaw attracs our attenticn in a manoer of-
ten desctibad as ‘preattentive’. For instance, the large bloks in
Fig. 1 nee pramisant, altbough locally the blebs' contoars are
indistingaishatde from background coztours on the basis of Jo-
cal crientotion, curvabises, contraet, etc. It seema s iF ane most
somithow capture meat of the carve beinding a blob in ordes fa
perceive it 2s a proseinent steactiers, The circle iz Fig. 2 s -
mdintely perosived altbough its eesteur is fragmanted, implying
that gape do oot hinder the immodiate percaplion of such obe
jects. In this ces one must group together sevaral line segments
of the circe o distinguish il from the backgroond. Thess ex-
amplea also demongtrais that these prominest ohjects pesd nat
ba eacopimized in order foe them to be diatiguimhed. The imaga
in Fig. 5 is an edge image of a car in & luttered background,
Our assentisn is drawn immediately to the magion of interest in
she image, [t seams that the car peed mot be mecogniied to at-
tract oar attention. When 1 image s inverted asd pressnted
far shoet pericds, recognitlen becomes considersbly mces dJiff-
sult, yet the same region remaing aaliant
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Figure £ A cirche in & backgeound of 200 rendomly
pacel asd ariested segments. The circla i atill pes-
calved [mmadiatalhy althangh its it b frag:

The goal of this paper i to soggesd what makes strucbures
suck i thass is Fig. 1 — 3 smlient, and te peapom o eechenism
for detecting aelbst lecsbions in an imege. A locally conpected

http://www.cs.huji.ac.il/~shashua/papers/saliency.pdf



6.3.2 Saliency

http://people.csail.mit.edu/people/billf/freemanThesis.pdf



The recursive saliency calculation iz as follows:

SY = o (6.3)

o T ] o[ LT -
S; = o; + max[5" fi ], (6.4)

o

where 5;" 18 the saliency of the ith orientation element after the Eth iteration. o; 1s the
local saliency of the :th element, and f;; 1s a coupling constant between the ith and
jth orientation elements. The maximization i1s taken over all neighboring orientation
elements, j. The coupling constant penalizes sharp bends of the curve and effectively
mmposes a prior distribution on the expected shapes of the image contours. Shaashua
and Ullman showed that after /v iterations, the above algorithm will find the saliency

of the most salient curve of length /v originating from each contour.

http://people.csail.mit.edu/people/billf/freemanThesis.pdf



http://people.csail.mit.edu/people/billf/freemanThesis.pdf

Figure 6-6: Saliency calculation. (a) Original figure, adapted from [95]. (b}

Orientation evidence, based on spatial and angular local maxima of oriented
filter outputs. (Shaashua and Ullman wsed Canny edee fragments for this
step). Based on the orientation strength evidence in (b)), the saliency algorithm
was apphed for 20 iterations. (c) shows the saliency of most salient contour
of the 16 contours leaving each position. Note the “cloud” of salient values
surrounding each image contour. {d) Curve traced starting from a position and
orientation of high saliency. The curves traced by following the last choice of
each orientation element are a reasonable approximation to the maximally
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Figurs 5. Saliancy map of the image in Fig. 2 cbtained
by the metwork afliez 10 terafioms. The ealisncy manaura
of each slemast of the cizcle bs significantly Bighar dhan
of the backgronnd cl=menta,

Figure &, The cxrve staming from che strongest lement
s Egure % Viesal slamentr sre disployed o detiad
s

background clements. In this ragurd, the sirele virtually 'pops-
ait® Tram the saliency map
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Figure 7. The same circle &8 im figure 2 bt with oL
|:-\.1.L|l\.|;r'.-|.|u]. oy 0 £ 2t

The mcond point Lo zotice in that & complete obgect @ sep-
arated fram the backgroand althoigh it @ initially fragmentsd.

|":_h:-\¢ 5. Balmncy map of tha smage 18 Flg. T ehirined
by thi setwork after 10 jleratbons,

of background aloments mcronsas n'|||:-|in-|'.':-|.l.||:|- Ta :|||||:?|I:.'.'|.'.-|:"I e
doubled the nummber of back E[rlupq,l slesnents ns dhown is Pla T
Wa 4p|,:t|m_| RERiA Len dleratisnd Lo Frud.ul’."t thia saliency map
im Fig. 8. Starting from the most slient element, the curoe
extzacted by the network is identical with the one in Fig.

The mixt ..':.lu.'||:||.' Ia the ;.'III:I.:d_-: in Plg k. }Jg ¥ abaws the
ailieney map after 30 iteratioms. Cnly the region surrounding
the car i displayed. The aaliency measure given Lo moat of
the alemonts of the ser ia sagrifleantly higher than chat given to
the background ebements. Fig. 10 displays the five most salieat
surves obtained by tracing the moat szlient elementa

Mode that the tracad carves have besn amostihed, and that
tha gape have boon filled i, The reasls suggost that the saliescy
computatian @ usehal for datinguishing sipnifcant structares in

Fegure ¥, =a q.' mAT of bhe Tmage 10 Fig 3 ebtained
by tha pabwark afteg 3l iteraisces, Tho regica of intersal
vistgnlly ‘popascul” from. Whe display.
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