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Readings

Brief overview of classifiers in context of gender
recognition:

— , Gender
Classification with Support Vector Machines Citation:
Moghaddam, B.; Yang, M-H., "Gender Classification with Support
Vector Machines"”, IEEE International Conference on Automatic
Face and Gesture Recognition (FG), pps 306-311, March 2000

Overview of support vector machines—Statistical
Learning and Kernel MethodsBernhard Scholkopf,

M. Weber, M. Welling and P. Perona
Proc. 6th Europ. Conf. Comp. Vis., ECCV,

Dublin, Ireland, June 2000
ftp://vision.caltech.edu/pub/tech-reports/ECCV00-
recog.pdf



http://www.merl.com/reports/docs/TR2000-01.pdf
ftp://ftp.research.microsoft.com/pub/tr/tr-2000-23.pdf

Gender Classification with
Support Vector Machines

Baback Moghaddam
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Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Support vector machines (SVM’s)

he 3 good ideas of SVM’s



Good idea #1: Classify rather than
model probability distributions.

o Advantages:

— Focuses the computational resources on the task at
hand.

e Disadvantages:
— Don’t know how probable the classification is

— Lose the probabilistic model for each object class;
can’t draw samples from each object class.



Good i1dea #2: Wide margin
classification

 For better generalization, you want to use
the weakest function you can.

— Remember polynomial fitting.
e There are fewer ways a wide-margin

hyperplane classifier can split the data than
an ordinary hyperplane classifier.



Too weak
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Figure 1.6. An example of a set of 11 data points obtained by sampling the
function h(z), defined by (1.4), at equal intervals of x and adding random noise.
The dashed curve shows the function h(x), while the solid curve shows the
rather poor approximation obtained with a linear polynomial, corresponding
to M =1in (1.2).

Bishop, neural networks for pattern recognition, 1995



Just right
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Figure 1.7. This shows the same data set as in Figure 1.6, but this time fitted by

a cubic (M = 3) polynomial, showing the significantly improved approximation
to h(z) achieved by this more flexible function.

Bishop, neural networks for pattern recognition, 1995



T00 strong
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Figure 1.8. The result of fitting the same data set as in Figure 1.6 using a 10th-
order (M = 10) polynomial. This gives a perfect fit to the training data, but
at the expense of a function which has large oscillations, and which therefore
gives a poorer representation of the generator function h{z) than did the cubic
polynomial of Figure 1.7.

Bishop, neural networks for pattern recognition, 1995
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Figure 1.5 A binary classification toy problem: separate balls from diamonds. The optimal
hyperplane (1.23) is shown as a solid line. The problem being separable, there exists a weight
vector w and a threshold b such that y;({w,x;) +b) > 0 (i = 1,...,m). Rescaling w and
b such that the point(s) closest to the hyperplane satisfy |(w,x;) + b| = 1, we obtain a
canonical form (w,b) of the hyperplane, satisfying vi({w,x;) 4 b) > 1. Note that in this
case, the margin (the distance of the closest point to the hyperplane) equals 1/||w]||. This
can be seen by considering two points x;,x; on opposite sides of the margin, that is,
{w,x1) +b =1,{w,x;) + b = —1, and projecting them onto the hyperplane normal vector
W/ ||W|.

Learning with Kera{yls,gcholkopf and_SmoIa, 2002 ] ]

Finding the wide-margin separating hyperplane: a quadratic

programming problem, involving inner products of data vectors



Good 1dea #3: The kernel trick



Non-separable by a hyperplane in 2-d




Separable by a hyperplane in 3-d
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Figure 1.6 The idea of SVMs: map the training data into a higher-dimensional feature
space via @, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of a kernel function (1.2), it

is possible to compute the separating hyperplane without explicitly carrying out the map
into the feature space.

Learning with Kernels, Scholkopf and Smola, 2002



The kernel 1dea

e There are many embeddings where the dot product in the
high dimensional space is just the kernel function applied to
the dot product in the low-dimensional space.

o For example:
— K(x,X*) = (<x,x’> + 1)¢
* Then you “forget” about the high dimensional embedding,
and just play with different kernel functions.



Example kernel

K(x,x) = (<X, X >+1)°

Here, the high-dimensional vector is

(X1’ Xz)_ > (1’ \/Exp Xlz,\/EXZ, X22)

You can see for this case how the dot product of the high-dimensional vectors is
just the kernel function applied to the low-dimensional vectors. Since all we need
to find the desired hyperplanes separating the high-dimensional vectors is their dot
product, we can do it all with kernels applied to the low-dimensional vectors.

2 kernel function applied to the

K ((Xl’ XZ)’ (X]’_, X; )) — (XlX:[ + X2 X; +1) low-dimensional vectors
= (X%,X])% + (X, X})% +1+2X,X + 2X, X,

e, =< (L 254, XE 2%, X)) (L 2X, X%, 2%, X57) >



 See also nice tutorial slides
http://www.bioconductor.org/workshops/N
GFNO3/svm.pdf



Example kernel functions

Polynomials
Gaussians

Sigmoids

Radial basis functions
Etc...



The hyperplane decision function

() =590 44 (xX) )

Eq. 32 of “statistical learning and kernel methods, MSR-TR-2000-23



Figure 1.7 Example of an SV classifier found using a radial basis function kernel k(x, x') =
exp(—||x — x'||?) (here, the input space is X = [—1,1]?). Circles and disks are two classes of
training examples; the middle line is the decision surface; the outer lines precisely meet the
constraint (1.25). Note that the SVs found by the algorithm (marked by extra circles) are not
centers of clusters, but examples which are critical for the given classification task. Gray
values code |3, y;ck(x, x;) + b|, the modulus of the argument of the decision function
(1.35). The top and the bottom lines indicate places where it takes the value 1 (from [471]).

Learning with Kernels, Scholkopf and Smola, 2002



Discriminative approaches:
e.g., Support Vector Machines
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Gender Classification with
Support Vector Machines

Baback Moghaddam
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Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Prototypes

yn-aepue-)spaudem

Copyright 1995

s~ |mMages courtesy of University of St. Andrews Perception Laboratory

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Prototypes

yn-aepue-)spaudem

s Images courtesy of University of St. Andrews Perception Laboratory

University of St. Andrews

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Classifier Evaluation

e Compare “standard” classifiers

e 1755 FERET faces

— 80-by-40 full-resolution
— 21-by-12 “thumbnails”

« 5-fold Cross-Validation testing

e Compare with human subjects

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Face Processor

— w] Multiscale g Feature
Head Search Search

(o) o) ) -

[Moghaddam & Pentland, PAMI-19:7]

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender (Binary) Classifier

Gender [ . F ] M
Classifier
E

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Binary Classifiers

NN Linear Fisher

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Linear SVM Classifier

e Data: {xi,Vi} i=123..N Vyi={1+1}
e Discriminant: f(x)=(w.x+b) >0

* minimize | w ||

 subject to Vi(W.Xi+b)>1 foralli

Note we just need the
vector dot products, so this

 Solution: QP giVGS {Oti} is easy to “kernelize”.
* Wopt = 2 ai Vi Xi

e f(X)= 2 aiyi(Xi.X)+D

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



“Support Faces

FEMALE

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Classifier Performance

Classifier | Error Rate

Overall Male Female
SVM with RBF kernel 3.38% 2.05% 4.79%
SVM with cubic polynomial kernel 4.38"% 4.21% 5.59%
Large Ensemble of RBF 5.54% 4.59% 6.55%
Classical RBF 1.79% 6.89% 8.75%
Quadratic classifier 10.63% 9.44% 11.88%
Fisher linear discriminant 13.03% | 12.31% | 13.78%
Nearest neighbor 27.16% | 26.53% | 28.04%
Linear classifier 538.95% | 358.47% | 59.45%

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002
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Classifier Error Rates

Linear
1-NN

Fisher

Quadratic

RBF

Large ERBF
SVM - Cubic
SVM - Gaussian

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Perception Study

e Mixture: 22 males, 8 females
e Age: mid-20s to mid-40s

o Stimuli: 254 faces (randomized)

— low-resolution 21-by-12
— high-resolution 84-by-48

o Task: classify gender (M orF)

— forced-choice
— no time constraints

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



How would you classify these 5 faces?

LU

Top five human misclassifications

True classification: F, M, M, F, M



Human Performance

But note how the pixellated enlargement
hinders recognition. Shown below with

84 x 48 21 x 12 pixellation removed

Stimuli —

N = 4032 N =252

Results —. High-Res Low-Res o = 37%

6.54% 30.7%

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Machine vs. Humans
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Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



End of SVM section
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Previously: Object recognition via labeled training sets.
Now: Unsupervised Category Learning
Followed by:

Perceptual organization:
— Gestalt Principles

— Segmentation by Clustering
e K-Means
» Graph cuts
— Segmentation by Fitting
» Hough transform
 Fitting

Readings: F&P Ch. 14, 15.1-15.2



Unsupervised Learning

e Object recognition methods in last two lectures
presume:
— Segmentation
— Labeling
— Alignment

e What can we do with unsupervised (weakly
supervised) data?

» See work by Perona and collaborators

— (the third of the 3 bits needed to characterize all
computer vision conference submissions, after SIFT and
Viola/Jones style boosting).



References

Unsupervised Learning of Models for Recognition
M. Weber, M. Welling and P. Perona

Proc. 6th Europ. Conf. Comp. Vis., ECCV, Dublin,
Ireland, June 2000

Towards Automatic Discovery of Object Categories
M. Weber, M. Welling and P. Perona

Proc. IEEE Comp. Soc. Conf. Comp. Vis. and Pat. Rec.,
CVPR, June 2000


ftp://vision.caltech.edu/pub/tech-reports/ECCV00-recog.ps.gz
ftp://vision.caltech.edu/pub/tech-reports/ECCV00-recog.pdf
ftp://vision.caltech.edu/pub/tech-reports/CVPR00-recog.ps.gz
ftp://vision.caltech.edu/pub/tech-reports/CVPR00-recog.pdf

Yes, contalns obj ect No does not contam object

Fig. 1. Which objects appear consistently in the left images, but not on the right side? Can a
machine leamn to recognize instances of the two object classes (faces and cars) without any further
information provided?



What are the features that let us recognize that this is a face?
















Feature detectors

Keypoint detectors [roerstners?]

Jets / texture classifiers [maik-peronass, Malsburgol .. ]
Matched filtering / correlation surtss, ...]

PCA + Gaussian classiflers kirbyso, Turk-pentiandez... ]
Support vector machines (cirosi-poggios?, Pontil-verrios]
Neural networks [sung-roggioss, Rowley-Baluja-Kanade9s]

...... whatever works best (see handwriting experiments)



Representation

Use a scale invariant, scale sensing feature
keypoint detector (like the first steps of
Lowe’s SIFT).

From: Rob Fergus http://www.robots.ox.ac.uk/%7Efergus/

[Slide from Bradsky & Thrun, Stanford]
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[Slide from Bradsky & Thrun, Stanford]

Data




Features for Category Learning

A direct appearance model Is taken around
each located key. This is then normalized
by It’s detected scale to an 11x11 window.
PCA further reduces these features.

11x11 patch

From: Rob Fergus http://www.robots.ox.ac.uk/%7Efergus/

[Slide from Bradsky & Thrun, Stanford]
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Fig. 3. Points of interest (left) identified on a training image of a human face in cluttered back-
ground using Forstner’s method. Crosses denote corner-type patterns while circles mark circle-
type patterns. A sample of the patterns obtained using k-means clustering of small image patches
1s shown for faces (center) and cars (right). The car images were high-pass filtered before the part
selection process. The total number of patterns selected were 81 for faces and 80 for cars.



Hypothesis: H=(A,B,C,D,E)
Probability density: P(A,B,C,D,E)



Learningj

Fit with E-M (this example is a 3 part mode

We start with the dual problem of what to fit and where to fit it.

Assume that an object instance is the only
consistent thing somewhere in a scene.

We don’t know where to start, SO we use
the initial random parameters.

1.

2.

3.

(M) We find the best (consistent across
Images) assignment given the params.
(E) We refit the feature detector
params. and repeat until converged.
* Note that there isn’t much
consistency

This repeats until it converges at the
most consistent assignment with
maximized parameters across images.

From: Rob Fergus http://www.robots.ox.ac.uk/%7Efergus/

[Slide from Bradsky & Thrun, Stanford]



ML using EM

1. Current estimate 2. Assign probabilities to constellations

Image 1 Image 2 \ Image |

3. Use probabilities as weights to reestimate parameters. Example: u

@
new estimate of u
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The shape model. The mean location is indicated by the cross, with
the ellipse showing the uncertainty in location. The number by each
part is the probability of that part being present.

ttp://www.robots.ox.ac.uk/%7Efergus

From: Rob Fergus



Generative probabilistic model

Foreground model

based on Burl, Weber et al. [ECCV 98, '00]

Gaussian shape pdf

llllllll
lllll

"""""""""

Clutter model

Gaussian part appearance pdf

Gaussian
relative scale pdf

.-Illl /\
f \ -’

loglscale)

Prob. of detection

Uniform shape pdf
i gm

p(X,A|8)= > p(X,Ah|6)= > p(AlX,h,8)p(X|h,8)

Gaussian background
appearance pdf
A

held heHd

Uniform
relative scale pdf

From: Rob Fergus http://www.robots.ox.ac.uk/%7Efergus/

1 y >
logiscale)
Poission pdf on #
detections
[Slide from
- o — Bradsky &
Appearance S hape Thrun, Stanford]



Block diagram

: Foreground
Part Selection Model Learning Test?mages
_____________ | Y e

~150
Interest }10000 Parts Select/Update ' '
Parts | i Model Structure | """ ™\ Final Model Test

' |
—————————————— ! : <10 ‘ I <10 Parts Model
Foreground | Parts L Model ' ‘
Training Images T Estimation :
I | Background
Background LD Tre TR T S e Test Images

Training Images

Fig. 2. Block diagram of our method. “Foreground images” are images containing the target ob-
jects 1n cluttered background. “Background images™ contain background only.



Model Performance

b Cars Train
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Fig. 4. Results of the leaming experiments. On the left we show the best performing car model
with four parts. The selected parts are shown on top. Below, ellipses indicating a one-std deviation
distance from the mean part positions, according to the foreground pdf have been superimposed
on a typical test image. They have been aligned by hand for illustrative purposes, since the models
are translation invariant. In the center we show the best four-part face model. The plot on the right
shows average training and testing errors measured as 1 — A go, where A goe 1s the area under
the corresponding ROC curve. For both models, one observes moderate overfitting. For faces,
the smallest test error occurs at 4 parts. Hence, for the given amount of training data, this is the
optimal number of parts. For cars, 5 or more parts should be used.



Fig. 6. Examples of correctly and incorrectly classified images from the test sets, based on the
models 1n Fig. 4. Part labels are: () ="A’, 0="B", ¢ ="C", 5y = 'D". 100 foreground and 100
background images were classified in each case. The decision threshold was set to yield equal
error rate on foreground and background images. In the case of faces, 93.5% of all images were
classified correctly, compared to 86.5% 1n the more difficult car experiment.



Recognition

From: Rob Fergus http://www.robots.ox.ac.uk/%7Efergus/



Result: Unsupervised Learning

No Manual Preprocessing

No No No
labeling segmentation alignment

[Slide from Bradsky & Thrun, Stanford]



Burl, et al.
Weber, et al.
Fergus, et al.

200 ~ 400

Faces, Motorbikes,
Spotted cats,
Airplanes, Cars

From: Rob Fergus http://www.robots.ox.ac.uk/%7Efergus/
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Previously: Object recognition via labeled training sets.
Previously: Unsupervised Category Learning
Now:

Perceptual organization:
— Gestalt Principles

— Segmentation by Clustering
e K-Means
» Graph cuts
— Segmentation by Fitting
» Hough transform
 Fitting

Readings: F&P Ch. 14, 15.1-15.2



Segmentation and Line Fitting

Gestalt grouping
K-Means

Graph cuts
Hough transform
Iterative fitting



Segmentation and Grouping

Motivation: vision is often
simple inference, but for
segmentation

Obtain a compact
representation from an
Image/motion
sequence/set of tokens

Should support application

Broad theory Is absent at
present

e Grouping (or clustering)

— collect together tokens that
“belong together”

 Fitting

— assoclate a model with
tokens

— 1SsuUes

which model?

which token goes to which
element?

how many elements in the
model?



General 1deas

e Tokens e Bottom up
— whatever we need to segmentation
group (pixels, points, — tokens belong together
surface elements, etc., because they are
etc.) locally coherent
* Top down e These two are not
segmentation mutually exclusive

— tokens belong together
because they lie on the
same object
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Why do these tokens belong together?



What is the figure?



in: M.C. Mozer, M1 Jerdan and T. Petsche, editors, Advances in Newural Information Processing Systems 3 908915 (_J.EIElT].

Interpreting images by propagating
Bayesian beliefs

Yair Welss
Dept, of Braan and Cognative Sclenocs
Massadiesctts Institute of Tochnology
EL0-120, Cambridges, MA 02139 USA
ywess® payche mit sdu
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c. d.
Iigure 4: a. Local estimate of DOF along the contour. h. Performance of Hop-
field gradient descent, relaxation labeling and BBP as a function of time.

BBFP is the
only method that converges to the global minimum. c¢. DOF estimate of Hopfield net
after convergence. d. DOF estimate of BBP after convergence.



Basic ideas of grouping In

humans
e Figure-ground o (Gestalt properties
discrimination — A series of factors
affect whether

— grouping can be seen
In terms of allocating
some elements to a
figure, some to ground

— Impoverished theory

elements should be
grouped together



Not grouped

Proximity

similarity

Similarity

Common Fate

Common Region



Continuity
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Closure













Occlusion is an important cue in grouping.




Consequence:
Groupings by Invisible Completions

A

* Images from Steve Lehar’s Gestalt papers: http://cns-alumni.bu.edu/pub/slehar/Lehar.html



And the famous...




And the famous invisible dog eating
under a tree:




* \We want to let machines have these
perceptual organization abilities, to support
object recognition and both supervised and

unsupervised learning about the visual
world.



Segmentation as clustering

Cluster together (pixels, tokens, etc.) that belong
together...

Agglomerative clustering
— attach closest to cluster it is closest to
— repeat

Divisive clustering
— split cluster along best boundary
— repeat
Dendrograms
— yield a picture of output as clustering process continues



Clustering Algorithms

Algorithm 15.3: Aggomerative clustering, or clustering by merging

Iake each point a geparate cluster
Tntil the clustering iz satisfactory
Ilerge the two clusgters with the
smallest inter-cluster distance
end

Algorithm 15.4: Divisive clustering, or clustering by splitting

Congtruct a gingle cluster containing all pointe
TIntil the clustering is satisfactory
oplit the clusgter that yields the two
components with the largest inter-cluster distance
end
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K-Means

e Choose a fixed number of « Algorithm

clusters — fix cluster centers; allocate
points to closest cluster

— fix allocation; compute best

 Choose cluster centers and cluster centers

point-cluster allocations to x could be any set of

minimize error :
_ features for which we can
* can’t do this by search, compute a distance

because there are too. (careful about scaling)
many possible allocations.

2 > fe-ul

I eclusters | j eelements of i'th cluster



K-Means

Algorithm 15.5: Clustering by K-Means

Chooze & data pointe to act as cluster centers
TIntil the cluster centers are unchangead
Allocate each data point to cluster whose center iz nearsst
MNow engure that every clugter hag at leagt
one data point: possible techniques for doing thiz include |
supplying empty clusters with a point chogen at random from
pointe far from their custer center.
Eeplace the clugter centers with the mean of the elements
in their ¢lusters,
e




Image Clusters on intensity (K=5) Clusters on color (K=5)

K-means clustering using intensity alone and color alone



Clusters on color

K-means using color alone, 11 segments



K-means using
color alone,
11 segments.

Color alone
often will not
yeild salient segments!




K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing segmentation!

Hard to pick K...




Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image
V:image pixels

E: connections between
pairs of nearby pixels




Graphs Representations

. 01001
b 10000

-0 00001
e 00001

; 10110

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Weighted Graphs and Their
Representations
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Boundaries of image regions defined
by a number of attributes

— Brightness/color

— Texture

— Motion

— Stereoscopic depth

— Familiar configuration

[Malik]



Measuring Affinity

Intensity

A () exp{_( %05)@ (x)- mxz)}
Distance

aff (x,y)= exp{ 202 j(|x I )}
Color

aff (x,y)= exp{—( 203) @C(X)— c(y) )}



Eigenvectors and affinity clusters

o Simplestidea: wewanta ¢ This is an eigenvalue

vector a giving the problem - choose the
association between each eigenvector of A with
element and a cluster largest eigenvalue

 We want elements within
this cluster to, on the
whole, have strong affinity
with one another

e We could maximize
a' Aa
e But need the constraint

a'a=1



Example eigenvector

points

matrix

s

1 =1

eigenvector
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Example eigenvector
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eigenvector




Scale affects affinity




Scale affects affinity
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FIGURE 15.21: The number of clusters is reflected in the el genvalues of the affinity matrix.




Some Terminology for Graph
Partitioning
 How do we bipartition a graph:

[Malik]



Minimum Cut

A cut of a graph G is the set of
edges S such that removal of
S from G disconnects G.

Minimum cut is the cut of
minimum weight, where
weight of cut <A,B> Is given
as

W« A B>) - ZXEA,yeB W(X’ y)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Minimum Cut and Clustering




Drawbacks of Minimum Cut

 Weight of cut Is directly proportional to the
number of edges In the cut.

ooo |0 o .

Cuts with
o0 O ® lesser weight
000 than the
/ e |\ O ideal cut

Ideal Cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003




Normalized cuts

First eigenvector of affinity
matrix captures within cluster
similarity, but not across cluster
difference

Min-cut can find degenerate
clusters

Instead, we’d like to maximize
the within cluster similarity
compared to the across cluster
difference

Write graph as V, one cluster as
A and the other as B

 Maximize
cut(A,B) N cut(A,B)
assoc(A,V) assoc(B,V)

where cut(A,B) is sum of weights
that straddle A,B; assoc(A,V) is
sum of all edges with one end
In A.

l.e. construct A, B such that their
within cluster similarity is high
compared to their association
with the rest of the graph



Solving the Normalized Cut problem

o Exact discrete solution to Ncut is NP-complete
even on regular grid,
— [Papadimitriou’97]

« Drawing on spectral graph theory, good

approximation can be obtained by solving a
generalized eigenvalue problem.

[Malik]



Normalized Cut As Generalized
Eigenvalue problem

CutfAB) N Cut/A,B)
asso¢A,V) asso¢B,V)

_(@+X)"(D-W)(L+X) | (1-X)" (D-W)(-X) . hIN s ()
T @DoL @Kot T YD)

NcufA,B)=

after simplification, we get

T J—
Ncu(A B)=- (?Dw)y, withy, e{L-b},y" DL=0.
y' Dy

[Malik]



Normalized cuts

Instead, solve the generalized eigenvalue problem
max, (y" (D —W )y)subject to (y' Dy =1)

which gives
(D-W)y =Dy
Now look for a quantization threshold that maximizes the criterion ---

I.e all components of y above that threshold go to one, all below go to -
b



Brightness Image Segmentation




Brightness Image Segmentation







Results on color segmentation




Motion Segmentation with Normalized Cuts

* Networks of spatial-temporal connections:

| |
| |
| |
| Exl |
| |
| I

i F Ty .
> - - -
-+

fime->

e Motion “proto-volume” in space-time

time >






Comparison of Methods

Authors Matrix used Procedure/Eigenvectors used

Perona/ Freeman | Affinity A Istx: AX = AX
Recursive procedure

Shi/Malik D-AwithDa | 2" smallest generalized
degree matrix | eigenvector (D — A)x = ADX

D(i,i) =D A, j)| Also recursive

Scott/ Affinity ,JA Finds k eigenvectors of A, forms
Longuet-Higgins | User inputs k | V- Normalizes rows of V. Forms
Q =VV’. Segments by Q.
Q(i,))=1 -> same cluster

Ng, Jordan, Weiss | Affinity A, Normalizes A. Finds k
User inputs k | elgenvectors, forms X.
Normalizes X, clusters rows

Nugent Stanberry UW STAT 593E



Advantages/Disadvantages

e Perona/Freeman

— For block diagonal affinity matrices, the first
eigenvector finds points in the
“dominant”cluster; not very consistent

« Shi/Malik

— 2"d generalized eigenvector minimizes affinity
between groups by affinity within each group;
no guarantee, constraints

Nugent: Stanberry UW STAT 593E



Advantages/Disadvantages

o Scott/Longuet-Higgins
— Depends largely on choice of k
— Good results

* Ng, Jordan, Weiss
— Again depends on choice of k

— Claim: effectively handles clusters whose
overlap or connectedness varies across clusters

Nugent: Stanberry UW STAT 593E
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