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Readings
• Brief overview of classifiers in context of gender 

recognition:  
– http://www.merl.com/reports/docs/TR2000-01.pdf, Gender 

Classification with Support Vector Machines Citation: 
Moghaddam, B.; Yang, M-H., "Gender Classification with Support 
Vector Machines", IEEE International Conference on Automatic 
Face and Gesture Recognition (FG), pps 306-311, March 2000 

• Overview of support vector machines—Statistical 
Learning and Kernel MethodsBernhard Schölkopf, 
ftp://ftp.research.microsoft.com/pub/tr/tr-2000-23.pdf

• M. Weber, M. Welling and P. Perona 
Proc. 6th Europ. Conf. Comp. Vis., ECCV, 
Dublin, Ireland, June 2000 
ftp://vision.caltech.edu/pub/tech-reports/ECCV00-
recog.pdf

http://www.merl.com/reports/docs/TR2000-01.pdf
ftp://ftp.research.microsoft.com/pub/tr/tr-2000-23.pdf


Gender Classification with 
Support Vector Machines

Baback Moghaddam

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Support vector machines (SVM’s)

• The 3 good ideas of SVM’s



Good idea #1: Classify rather than 
model probability distributions.

• Advantages:
– Focuses the computational resources on the task at 

hand.
• Disadvantages:

– Don’t know how probable the classification is
– Lose the probabilistic model for each object class;  

can’t draw samples from each object class.



Good idea #2: Wide margin 
classification

• For better generalization, you want to use 
the weakest function you can.
– Remember polynomial fitting.

• There are fewer ways a wide-margin 
hyperplane classifier can split the data than 
an ordinary hyperplane classifier.



Too weak

Bishop, neural networks for pattern recognition, 1995



Just right

Bishop, neural networks for pattern recognition, 1995



Too strong

Bishop, neural networks for pattern recognition, 1995



Finding the wide-margin separating hyperplane:  a quadratic 
programming problem, involving inner products of data vectors

Learning with Kernels, Scholkopf and Smola, 2002



Good idea #3: The kernel trick



Non-separable by a hyperplane in 2-d

x1

x2



Separable by a hyperplane in 3-d

x2

x2
2

x1



Embedding 

Learning with Kernels, Scholkopf and Smola, 2002



The kernel idea
• There are many embeddings where the dot product in the 

high dimensional space is just the kernel function applied to 
the dot product in the low-dimensional space.

• For example:
– K(x,x’) = (<x,x’> + 1)d

• Then you “forget” about the high dimensional embedding, 
and just play with different kernel functions.



Example kernel
dxxxxK )1,(),( +>′<=′

Here, the high-dimensional vector is

),2,,2,1(),( 2
22

2
1121 xxxxxx >−

You can see for this case how the dot product of the high-dimensional vectors is 
just the kernel function applied to the low-dimensional vectors.  Since all we need 
to find the desired hyperplanes separating the high-dimensional vectors is their dot 
product, we can do it all with kernels applied to the low-dimensional vectors.

>′′′′=<

′+′++′+′=

+′+′=′′

),2,,2,1(),,2,,2,1(

221)()(

)1()),(),,((

2
22

2
11

2
22

2
11

2211
2

22
2

11

2
22112121

xxxxxxxx

xxxxxxxx

xxxxxxxxK

dot product of the high-
dimensional vectors

kernel function applied to the 
low-dimensional vectors



• See also nice tutorial slides 
http://www.bioconductor.org/workshops/N
GFN03/svm.pdf



Example kernel functions

• Polynomials
• Gaussians
• Sigmoids
• Radial basis functions
• Etc…



The hyperplane decision function
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Eq. 32 of “statistical learning and kernel methods, MSR-TR-2000-23



Learning with Kernels, Scholkopf and Smola, 2002



Discriminative approaches:
e.g., Support Vector Machines



Gender Classification with 
Support Vector Machines

Baback Moghaddam

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Prototypes

Images courtesy of University of St. Andrews Perception Laboratory

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Prototypes

Images courtesy of University of St. Andrews Perception Laboratory

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Classifier Evaluation

• Compare “standard” classifiers

• 1755  FERET faces 
– 80-by-40  full-resolution
– 21-by-12  “thumbnails”

• 5-fold Cross-Validation testing

• Compare with human subjects

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Face Processor

[Moghaddam & Pentland,  PAMI-19:7]

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender (Binary) Classifier

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Binary Classifiers
NN Linear Fisher

Quadratic RBF SVM

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Linear SVM Classifier

• Data: {xi , yi}   i =1,2,3 … N yi = {-1,+1}

• Discriminant:   f(x) = (w . x + b)  > 0   
• minimize  || w ||
• subject to yi (w . xi  + b) > 1    for all i

• Solution: QP gives  {αi}
• wopt = Σ αi yi xi 

• f(x) =  Σ αi yi (xi . x) + b

Note we just need the 
vector dot products, so this 
is easy to “kernelize”.

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



“Support Faces”

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Classifier Performance

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Classifier Error Rates
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SVM - Gaussian

SVM - Cubic
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Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Perception Study

• Mixture:  22 males, 8 females

• Age:  mid-20s  to  mid-40s

• Stimuli:  254 faces   (randomized)

– low-resolution   21-by-12
– high-resolution  84-by-48

• Task:  classify gender  (M or F)

– forced-choice
– no time constraints

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



How would you classify these 5 faces?

True classification:  F, M, M, F, M



Human Performance
84 x 48 21 x 12

Stimuli 

But note how the pixellated enlargement 
hinders recognition.  Shown below with 

pixellation removed

N = 4032 N = 252

High-Res  Low-Res

6.54% 30.7%
Results σ = 3.7%

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Machine vs. Humans
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Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



End of SVM section



6.869

Previously: Object recognition via labeled training sets.
Now:  Unsupervised Category Learning
Followed by:
Perceptual organization: 

– Gestalt Principles
– Segmentation by Clustering

• K-Means
• Graph cuts

– Segmentation by Fitting
• Hough transform
• Fitting

Readings:  F&P Ch. 14, 15.1-15.2



Unsupervised Learning
• Object recognition methods in last two lectures 

presume:
– Segmentation
– Labeling
– Alignment

• What can we do with unsupervised (weakly 
supervised) data?

• See work by Perona and collaborators
– (the third of the 3 bits needed to characterize all 

computer vision conference submissions, after SIFT and 
Viola/Jones style boosting).



References
•
• Unsupervised Learning of Models for Recognition
• M. Weber, M. Welling and P. Perona

(15 pages postscript) (15 pages PDF)
Proc. 6th Europ. Conf. Comp. Vis., ECCV, Dublin, 
Ireland, June 2000 

•
• Towards Automatic Discovery of Object Categories
• M. Weber, M. Welling and P. Perona

(8 pages postscript) (8 pages PDF)
Proc. IEEE Comp. Soc. Conf. Comp. Vis. and Pat. Rec., 
CVPR, June 2000 

•

ftp://vision.caltech.edu/pub/tech-reports/ECCV00-recog.ps.gz
ftp://vision.caltech.edu/pub/tech-reports/ECCV00-recog.pdf
ftp://vision.caltech.edu/pub/tech-reports/CVPR00-recog.ps.gz
ftp://vision.caltech.edu/pub/tech-reports/CVPR00-recog.pdf


Yes, contains object No, does not contain object



What are the features that let us recognize that this is a face?







A B

C D



A

B

C



Feature detectors
• Keypoint detectors [Foerstner87]

• Jets / texture classifiers [Malik-Perona88, Malsburg91,…]

• Matched filtering / correlation [Burt85, …]

• PCA + Gaussian classifiers [Kirby90, Turk-Pentland92….]

• Support vector machines [Girosi-Poggio97, Pontil-Verri98]

• Neural networks [Sung-Poggio95, Rowley-Baluja-Kanade96]

• ……whatever works best (see handwriting experiments)



Representation
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Use a scale invariant, scale sensing feature 
keypoint detector (like the first steps of 
Lowe’s SIFT). 

[Slide from Bradsky & Thrun, Stanford]



Data
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[Slide from Bradsky & Thrun, Stanford]



Features for Category Learning
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A direct appearance model is taken around 
each located key.  This is then normalized 
by it’s detected scale to an  11x11 window.  
PCA further reduces these features.

[Slide from Bradsky & Thrun, Stanford]



Unsupervised detector training - 2

“Pattern Space” (100+ dimensions)





A

B
C D

E

  E  EEEEE Ryx σθ=

  D DDDDD Ryx σθ=

Hypothesis: H=(A,B,C,D,E)
Probability density: P(A,B,C,D,E)



Learning
• Fit with E-M (this example is a 3 part model)
• We start with the dual problem of what to fit and where to fit it.
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Assume that an object instance is the only
consistent thing somewhere in a scene.

We don’t know where to start, so we use
the initial random parameters.

1. (M) We find the best (consistent across 
images) assignment given the params.

2. (E) We refit the feature detector 
params. and repeat until converged.
• Note that there isn’t much 

consistency

3. This repeats until it converges at the 
most consistent assignment with 
maximized parameters across images.

[Slide from Bradsky & Thrun, Stanford]



ML using EM
1. Current estimate 2. Assign probabilities to constellations

Large P

...

Image 2 Image i
Small P

pdf

Image 1

3. Use probabilities as weights to reestimate parameters. Example: µ

Large P x + Small P +   … =x

new estimate of µ



Learned
Model
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The shape model. The mean location is indicated by the cross, with 
the ellipse showing the uncertainty in location. The number by each 
part is the probability of that part being present. 
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[Slide from 
Bradsky & 
Thrun, Stanford]



Block diagram







Recognition
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Result: Unsupervised Learning
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6.869

Previously: Object recognition via labeled training sets.
Previously:  Unsupervised Category Learning
Now:
Perceptual organization: 

– Gestalt Principles
– Segmentation by Clustering

• K-Means
• Graph cuts

– Segmentation by Fitting
• Hough transform
• Fitting

Readings:  F&P Ch. 14, 15.1-15.2



Segmentation and Line Fitting

• Gestalt grouping
• K-Means
• Graph cuts
• Hough transform
• Iterative fitting



Segmentation and Grouping

• Motivation: vision is often 
simple inference, but for 
segmentation

• Obtain a compact 
representation from an 
image/motion 
sequence/set of tokens

• Should support application
• Broad theory is absent at 

present

• Grouping (or clustering)
– collect together tokens that 

“belong together”

• Fitting
– associate a model with 

tokens
– issues

• which model?
• which token goes to which 

element?
• how many elements in the 

model?



General ideas

• Tokens
– whatever we need to 

group (pixels, points, 
surface elements, etc., 
etc.)

• Top down 
segmentation
– tokens belong together 

because they lie on the 
same object

• Bottom up 
segmentation
– tokens belong together 

because they are 
locally coherent

• These two are not 
mutually exclusive



Why do these tokens belong together?



What is the figure?





Basic ideas of grouping in 
humans

• Figure-ground 
discrimination
– grouping can be seen 

in terms of allocating 
some elements to a 
figure, some to ground

– impoverished theory

• Gestalt properties
– A series of factors 

affect whether 
elements should be 
grouped together













Occlusion is an important cue in grouping.



Consequence:
Groupings by Invisible Completions

* Images from Steve Lehar’s Gestalt papers: http://cns-alumni.bu.edu/pub/slehar/Lehar.html



And the famous…



And the famous invisible dog eating 
under a tree:



• We want to let machines have these 
perceptual organization abilities, to support 
object recognition and both supervised and 
unsupervised learning about the visual 
world.



Segmentation as clustering

• Cluster together (pixels, tokens, etc.) that belong 
together…

• Agglomerative clustering
– attach closest to cluster it is closest to
– repeat

• Divisive clustering
– split cluster along best boundary
– repeat

• Dendrograms
– yield a picture of output as clustering process continues



Clustering Algorithms





K-Means

• Choose a fixed number of 
clusters

• Choose cluster centers and 
point-cluster allocations to 
minimize error 

• can’t do this by search, 
because there are too 
many possible allocations.

• Algorithm
– fix cluster centers; allocate 

points to closest cluster
– fix allocation; compute best 

cluster centers

• x could be any set of 
features for which we can 
compute a distance 
(careful about scaling)

x j − µ i

2

j∈elements of i'th cluster
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i∈clusters

∑



K-Means



Image Clusters on intensity (K=5) Clusters on color (K=5)

K-means clustering using intensity alone and color alone



Image Clusters on color

K-means using color alone, 11 segments



K-means using
color alone,
11 segments.

Color alone
often will not 
yeild salient segments!



K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing segmentation!

Hard to pick K…



Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image

V: image pixels

E: connections between 
pairs of nearby pixels

region       
 same  the tobelong       

j& iy that probabilit :ijW



Graphs Representations
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Weighted Graphs and Their 
Representations
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Boundaries of image regions defined 
by a number of attributes

– Brightness/color
– Texture
– Motion
– Stereoscopic depth
– Familiar configuration

[Malik]



Measuring Affinity
Intensity

aff x, y( )= exp − 1
2σ i

2
⎛ 
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⎠ I x( )− I y( ) 2( )⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Distance
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Eigenvectors and affinity clusters
• Simplest idea:  we want a 

vector a giving the 
association between each 
element and a cluster

• We want elements within 
this cluster to, on the 
whole, have strong affinity 
with one another

• We could maximize  

• But need the constraint 

• This is an eigenvalue
problem - choose the 
eigenvector of A with 
largest eigenvalue

aT Aa

aTa = 1



Example eigenvector

points

eigenvector

matrix



Example eigenvector

points

eigenvector

matrix



Scale affects affinity

σ=.2

σ=.1 σ=.2 σ=1



Scale affects affinity

σ=.1 σ=.2 σ=1



Some Terminology for Graph 
Partitioning

• How do we bipartition a graph:

∅=∩

∈∈
∑=

 BAwith 

BA,

                     

),,W(B)A,(
vu

vucut

disjointy necessarilnot  A' andA 

A'A,

                     

),(W)A'A,( ∑
∈∈

=
vu

vuassoc

[Malik]



Minimum Cut
A cut of a graph G is the set of 
edges S such that removal of 
S from G disconnects G.

Minimum cut is the cut of 
minimum weight, where 
weight of cut <A,B> is given 
as

( ) ( )∑ ∈∈
=

ByAx
yxwBAw

,
,,

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Minimum Cut and Clustering

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Drawbacks of Minimum Cut

• Weight of cut is directly proportional to the 
number of edges in the cut.

Cuts with 
lesser weight
than the 
ideal cut

Ideal Cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Normalized cuts

• First eigenvector of affinity 
matrix captures within cluster 
similarity, but not across cluster 
difference

• Min-cut can find degenerate 
clusters

• Instead, we’d like to maximize 
the within cluster similarity 
compared to the across cluster 
difference

• Write graph as V, one cluster as 
A and the other as B

• Maximize

where cut(A,B) is sum of weights 
that straddle A,B; assoc(A,V) is 
sum of all edges with one end 
in A.

I.e. construct A, B such that their 
within cluster similarity is high 
compared to their association 
with the rest of the graph

cut(A,B)
assoc(A,V)

cut(A,B)
assoc(B,V)

+



Solving the Normalized Cut problem

• Exact discrete solution to Ncut is NP-complete 
even on regular grid,
– [Papadimitriou’97]

• Drawing on spectral graph theory, good 
approximation can be obtained by solving a 
generalized eigenvalue problem.

[Malik]



Normalized Cut As Generalized 
Eigenvalue problem
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Normalized cuts
• Instead, solve the generalized eigenvalue problem

• which gives

• Now look for a quantization threshold that maximizes the criterion ---
i.e all components of y above that threshold go to one, all below go to -
b

maxy yT D − W( )y( ) subject to yT Dy = 1( )

D − W( )y = λDy



Brightness Image Segmentation



Brightness Image Segmentation





Results on color segmentation



Motion Segmentation with Normalized Cuts

• Networks of spatial-temporal connections:

• Motion “proto-volume” in space-time





Comparison of Methods
Authors Matrix used Procedure/Eigenvectors used

Perona/ Freeman Affinity A 1st x: 
Recursive procedure

Shi/Malik D-A with D a
degree matrix

2nd smallest generalized
eigenvector
Also recursive

Scott/
Longuet-Higgins

Affinity A,
User inputs k

Finds k eigenvectors of A, forms 
V.  Normalizes rows of V. Forms 
Q = VV’. Segments by Q. 
Q(i,j)=1 -> same cluster

Ng, Jordan, Weiss Affinity A,
User inputs k

Normalizes A. Finds k 
eigenvectors, forms X. 
Normalizes X, clusters rows 

Ax xλ=

( , ) ( , )
j

D i i A i j= ∑
( )D A x Dxλ− =

Nugent, Stanberry UW STAT 593E



Advantages/Disadvantages

• Perona/Freeman
– For block diagonal affinity matrices, the first 

eigenvector finds points in the 
“dominant”cluster; not very consistent

• Shi/Malik
– 2nd generalized eigenvector minimizes affinity 

between groups by affinity within each group; 
no guarantee, constraints

Nugent, Stanberry UW STAT 593E



Advantages/Disadvantages

• Scott/Longuet-Higgins
– Depends largely on choice of k
– Good results

• Ng, Jordan, Weiss
– Again depends on choice of k
– Claim: effectively handles clusters whose 

overlap or connectedness varies across clusters

Nugent, Stanberry UW STAT 593E



Affinity Matrix       Perona/Freeman      Shi/Malik Scott/Lon.Higg

1st eigenv. 2nd gen. eigenv.         Q matrix

Affinity Matrix       Perona/Freeman      Shi/Malik Scott/Lon.Higg

1st eigenv. 2nd gen. eigenv.         Q matrix

Affinity Matrix       Perona/Freeman      Shi/Malik Scott/Lon.Higg

1st eigenv. 2nd gen. eigenv.         Q matrixNugent, Stanberry UW STAT 593E
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