Supervised object recognition,
unsupervised object recognition
then Perceptual organization
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Readings

« Brief overview of classifiers in context of gender
recognition:

- , Gender
Classification with Support Vector Machines Citation:
Moghaddam, B.; Yang, M-H., "Gender Classification with Support
Vector Machines", IEEE International Conference on Automatic
Face and Gesture Recognition (FG), pps 306-311, March 2000

« Overview of support vector machines—Statistical
Learning and Kernel MethodsBernhard Schdlkopf,

e M. Weber, M. Welling and P. Perona
Proc. 6th Europ. Conf. Comp. Vis., ECCV,
Dublin, Ireland, June 2000
ftp://vision.caltech.edu/pub/tech-reports/ECCV00-
recog.pdf

Gender Classification with
Support Vector Machines

Baback Moghaddam

A MITSUBISH ELECTRIC RESEARCH LABORATORIES

Moghaddam, B.; Yang, M-H, "Leaming Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002

Support vector machines (SVM’s)

» The 3 good ideas of SVM’s

Good idea #1: Classify rather than
model probability distributions.

 Advantages:
— Focuses the computational resources on the task at
hand.
« Disadvantages:
— Don’t know how probable the classification is

— Lose the probabilistic model for each object class;
can’t draw samples from each object class.

Good idea #2: Wide margin
classification

* For better generalization, you want to use
the weakest function you can.
— Remember polynomial fitting.

* There are fewer ways a wide-margin
hyperplane classifier can split the data than
an ordinary hyperplane classifier.




Too weak
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Figure 1.6. An example of a set of 11 data points obtained by sampling the
function k(z), defined by (1.4), at equal intervals of x and adding random noise.
The dashed curve shows the funetion h(x), while the solid eurve shows the
rather poor approximation obtained with a linear polynomial, corresponding
to M = 1in (1.2).

Bishop, neural networks for pattern recognition, 1995

Just right
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Figure 1.7. This shows the same data set as in Figure 1.6, but this time fitted by
acubic (M = 3) pol ial, showing the significantly imp ] approximati
to hiz) achieved by this more flexible function.

Bishop, neural networks for pattern recognition, 1995

Too strong
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Figure 1.8. The result of fitting the same data set as In Figure 1.6 using a 10th-
arder (M = 10) polynomial. This gives & perfoct it to the training data, but
at the expense of a function which has large oscillations, and which therefore
gives a poorer representation of the generator function k(z) than did the cubic
polynomial of Figure 1.7.

Bishop, neural networks for pattern recognition, 1995

Note:
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Figure 1.5 A binary classification toy problem: separate balls from di ds. The aptimal
Iperplame (1.23) is shown as a solid line. The problem being separable, there exists a weight
vector w and a threshold b such that wi{w,x) + B) > 0 (i = 1,...,m). Rescaling w and
b such that the point(s) closest to the hyperplane satisfy | {w,x) + | = 1, we obtain a

camonical form (w,b) of the hyperplane, satisfying y({w,%} + b} = 1. Mote that in this
case, the margin (the distance of the closest point to the hyperplane) equals 1/jw]. This
can be seen by considering two points x,,X: on opposite sides of the margin, that is,
J‘".' %} +b=1,(w,x}+b= —1, and projecting them onto the hyperplane normal vector
w/||wll.

Learning with Kernels, Scholkopf and Smola, 2002 .

Finding the wide-margin separating hyperplane: a quadratic

programming problem, involving inner products of data vectors

Good idea #3: The kernel trick

Non-separable by a hyperplane in 2-d
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Separable by a hyperplane in 3-d

Embedding

input space i feature spuce
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Figure 1.6 The idea of 5VMs: map the training data into a higher-dimensional feature
space via @, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of a kernel function (1.2), it
is possible to compute the separating hyperplane without explicitly carrying out the map
into the feature space.

Learning with Kernels, Scholkopf and Smola, 2002

The kernel idea

¢ There are many embeddings where the dot product in the
high dimensional space is just the kernel function applied to
the dot product in the low-dimensional space.
« For example:
— K(XX") = (x,x>+1)4
« Then you “forget” about the high dimensional embedding,
and just play with different kernel functions.

Example kernel

K(x,X) = (< %, X' >+1)°
Here, the high-dimensional vector is

(X0 %) = > (L2x,, X2, 42X, X2)

You can see for this case how the dot product of the high-dimensional vectors is
just the kernel function applied to the low-dimensional vectors. Since all we need
to find the desired hyperplanes separating the high-dimensional vectors is their dot
product, we can do it all with kernels applied to the low-dimensional vectors.

2kernel function applied to the

KXy, X5), (X1, X5)) = (X X1 + Xy X5 + 1) ®low-dimensional vectors
= (%, X)% + (X,X5)% +1+ 2%, X + 2X, X}
g =< (125, X, V2%,, X2), (L2, X7, N2, X57) >

* See also nice tutorial slides
http://www.bioconductor.org/workshops/N
GFNO03/svm.pdf

Example kernel functions

Polynomials

» Gaussians

* Sigmoids

« Radial basis functions
 Etc...




The hyperplane decision function

00 =san(. %, 00%) +b)

Eq. 32 of “statistical learning and kernel methods, MSR-TR-2000-23

Figure 1.7 Example of an SV classifier found using a radial basis function kernel kix, x) =
exp(=|lx = #'|F) (here, the input space Circles and disks are two classes of
training examples; the middle line

constraint (1.25). Note that the SV
centers of clusters, but examples r the given cl
values code | E3, wok(x, xi) + b, wdulus of the argument of the o
(1.35). The top and the bottom lines indicate places where it takes the value 1 (from [471])

m {marked

Learning with Kernels, Scholkopf and Smola, 2002

Discriminative approaches:
e.g., Support Vector Machines

HON-FACES |

Gender Classification with
Support Vector Machines

Baback Moghaddam

A MITSUBISH ELECTRIC RESEARCH LABORATORIES

Moghaddam, B.; Yang, M-H, *Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002

Gender Prototypes

Images courtesy of University of St. Andrews Perception Laboratory

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Patten Analysis and Machine Intelligence (TPAMI), May 2002

Gender Prototypes

Images courtesy of University of St. Andrews Perception Laboratory

Moghaddarm, B.; Yang, M-H, *Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002




Classifier Evaluation

» Compare “standard” classifiers

1755 FERET faces

— 80-by-40 full-resolution
— 21-by-12 “thumbnails”

5-fold Cross-Validation testing

¢ Compare with human subjects

Moghaddam, B.; Yang, M-H, “Learing Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002

Face Processor

Multiscale
Head Search
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[Moghaddam & Pentland, PAMI-19:7]

Moghaddan, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Inteligence (TPAMI), May 2002

Gender (Binary) Classifier
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Moghaddam, B.; Yang, M-H, “Learing Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002

Binary Classifiers

NN Linear Fisher

Moghadda, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Paltern Analysis and Machine Inteligence (TPAMI), May 2002

Linear SVM Classifier

o Data: {xi,yi} i=123..N yi={1+1}
Discriminant: f(x)=(w.x+b) >0

* minimize [l w|
* SUbjECt to i (W X +b) > ]Note \t\%rjgg! rieed the

vector dot products, so this
is easy to “kernelize”.

Solution: QP gives {ai}
* Wopt = 2 i Yi Xi

fX)= Zaiyi(xi.x)+b

Moghaddam, B.; Yang, M-H, “Learing Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002

“Support Faces”

FEMALE E

Moghaddam, B.; Yang, M-H, "Learing Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002




Classifier Performance

Classilier i Error Rate

Overall Male Female
SVM with RBF kernel 3.38% 2.05% 4.79%
SVM with cubie polynomial kernel 885 | 4.21% 5.59%
Large Ensemble of RBEF 5.54% 4.59% 6.55%
Classical RBF T.79% 6.80% 8.75%
Quadratic classifier 10.63% 9.44% | 11.88%
Fisher linear discrimi 13.03% | 12.31% | 13.78%
Nearest neighbor 27.06% | 26.53% | 28.04%
Lincar classifier 58.95% | 58.47% | 59.45%

T 1

Moghaddam, B.; Yang, M-H, “Learing Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002

Classifier Error Rates

Linear

1-NN

Fisher
Quadratic

RBF

Large ERBF
SVM - Cubic
SVM - Gaussian

Moghaddan, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Inteligence (TPAMI), May 2002

Gender Perception Study

* Mixture: 22 males, 8 females
e Age: mid-20s to mid-40s

e Stimuli: 254 faces (randomized)

— low-resolution 21-by-12
— high-resolution 84-by-48

e Task: classify gender (MorF)

- forced-choice
— no time constraints

Moghaddam, B.; Yang, M-H, “Learing Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002

How would you classify these 5 faces?

Top five human misclassifications

True classification: F, M, M, F, M

Human Performance

But note how the pixellated enlargement
hinders recognition. Shown below with
pixellation removed

21 x 12

Stimuli —

N = 4032 N =252

Results . High-Res Low-Res o =37%

6.54% 30.7%

Moghaddam, B.; Yang, M-H, “Learing Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002

Machine vs. Humans

3 H Low-Res
30 D High-Res
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Moghaddam, B.; Yang, M-H, "Learing Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002




End of SVM section
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Previously: Object recognition via labeled training sets.
Now: Unsupervised Category Learning
Followed by:

Perceptual organization:

— Gestalt Principles

— Segmentation by Clustering
* K-Means
« Graph cuts

— Segmentation by Fitting
« Hough transform
« Fitting

Readings: F&P Ch. 14, 15.1-15.2

Unsupervised Learning

 Object recognition methods in last two lectures
presume:
— Segmentation
— Labeling
— Alignment

» What can we do with unsupervised (weakly
supervised) data?

 See work by Perona and collaborators

— (the third of the 3 bits needed to characterize all
computer vision conference submissions, after SIFT and
Viola/Jones style boosting).

References

« Unsupervised Learning of Models for Recognition
e M. Weber, M. Welling and P. Perona

Proc. 6th Europ. Conf. Comp. Vis., ECCV, Dublin,
Ireland, June 2000

« Towards Automatic Discovery of Object Categories
e M. Weber, M. Welling and P. Perona

Proc. IEEE Comp. Soc. Conf. Comp. Vis. and Pat. Rec.,
CVPR, June 2000

Fig. 1. Which objects appear atently in the beft images, but mot on the night side” Can a
miachine leam to recognize instances of the two object classes (faces and cars) without any further
informtion provided?

What are the features that let us recognize that this is a face?




Feature detectors

Keypoint detectors [Foerstners?]

Jets / texture classifiers pvalik-peronass, Matsburgot....]
Matched filtering / correlation (surss, ...]

PCA + Gaussian classifiers imyso, urpentandsz...]
Support vector machines sirosi-poggios?, ponti-verrios]
Neural networks (sung-roggioss, Rowley-Baluja-Kanadese]

...... whatever works best (see handwriting experiments)

Representation

Use a scale invariant, scale sensing feature
keypoint detector (like the first steps of
Lowe’s SIFT).

bots.ox.ac.uk/%7Efergus/

From: Rob Fergus http://v

[Slide from Bradsky & Thrun, Stanford]




[Slide from Bradsky & Thrun, Stanfor

LSslide from Li Fei-Fei http://www.vision.caltech.edu/feifeili/Resume.htm

Features for Category Learning

A direct appearance model is taken around
each located key. This is then normalized
by it’s detected scale to an 11x11 window.
PCA further reduces these features.

obots.ox.ac.uk/%7Efergus/
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[Slide from Bradsky & Thrun, Stanford]

F Unsupervised detector training - 2 It

“Pattern Space” (100+ dimensions) -

Fig. 3. Points of interest (left) identified on a training image of a human face in clutiere
ground using Forstner’s method. Crosses denote cormer-type patterns while circles
type panerns. A sample of the patterns obtained wsing k-means clustening of small
15 shown for {center) and cars (nght). The car images were high- il

selection process. The total number of patterns selected were 81 for faces and 80 for cars

E=Xx. Ye 6 o Re
(A}

8)

®

Hypothesis: H=(A,B,C,D,E)
Probability density: P(A,B,C,D,E)

@

Learnlng

« Fit with E-M (this example is a 3 part model
« We start with the dual problem of what to fit and where to fit it.

Assume that an object instance is the only

consistent thing somewhere in a scene.

We don't know where to start, so we use
L 9 the initial random parameters.

1. (M) We find the best (consistent across
images) assignment given the params.
2. (E) We refit the feature detector
params. and repeat until converged.
Note that there isn’'t much
consistency

bots.ox.ac.uk/%7Efergus/

3. This repeats until it converges at the
most consistent assignment with
maximized parameters across images.

@
w
S
14

S
[

[Slide from Bradsky & Thrun, Stanford]




ML using EM

2. Assign probabilities to constellations

Image 2 \

1. Current estimate

Image 1 Image i

3. Use probabilities as weights to reestimate parameters. Example: p

e
new estimate of p

Generative probabilistic model

I u[egruurnj model based on Burl, Weber et al, [ECCV '08, "00]

Gaussian part appearance pdf Gawssian

Gaussian shape pdf -
—_— relative scale pdf

loglscak)

Prah. of detection

Clutter model m

Gaussian background "
appearance pf Unifarm
ive scale pdf

Uniform shape pdf
Ema

b Fergus http://www.robots.ox.ac.uk/%7Efergus/

loglicak)

Poission pdi on #

detertions
PAAR) = 3 B AR ) = 3 p( ALY L, &) p(X|h,8) [Slide from
,.,LH .,Lu',w—v—v'w—\.—w Bradsky &
= Apprarance  Shops Thrun, Stanford)
A B = =] A B C D Mol Partormance

with four parts. The selected pant

distance from the mean part positions,

shown on top. Below, ellipses indicatin

ecording to the foreground pdf have been superimposed
on a typical test image. They have been aligned by hand for illustrative purposes, since the models
are translation imvariant. In the center we show the best four-part face model. The plot on the right
d testing errors measured as 1 — A g, where Agoe is the an
the corresponding ROC curve. For both models, one observes moderate overfining. For fa
the smallest test error oceurs at 4 parts. Henee, for the given umount of truining duta, this is the
optimal number of parts. For cars, § or more parts should be used.

shows average trainin

) () EmdenEad
O V. M eXa @R
o B0REBER0E

Learned
Model

10
s BEBSEE™

'Y LEFLVEY ¥

robots.ox.ac.uk/%7Efergus/

Yackground Det: 5x1

O, ] B

The shape model. The mean location is indicated by the cross, with
the ellipse showing the uncertainty in location. The number by each

part is the probability of that part being present.

Block diagram

Part Selection _ ____ . “"_“.’e_' Leaming_ ________ Test Images
(e 20000 ~— 1 543
| Operator | Parts \va) |

Fig. 2. Block diagram of our method. “Foreground images™ are images containing the target ob-

Jjects in cluttered background. *Background images™ contain background only.

ke
Fig. 6. Exumples of correctly and incorrectly classified images from the test scts, based on the

models in Fig. 4. Part labels are: O = A", 0 = "B". & 7 = "D 100 foreground and 100
background images were classified in each case. The decision threshold was set to yield equal

error rate on foreground and background images. In the case of faces, 93.5% of all images were
classified correctly, compared to 86.5% in the more difficult car experiment.

10



Recognition

Result: Unsupervised Learning

ww.robots.ox.ac.uk/%7Efergus/
v.vision.caltech.edu/feifeili/Resume.htm

From: Rob Fergus http:/
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[Slide from Bradsky & Thrun, Stanfori
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Previously: Object recognition via labeled training sets.
Previously: Unsupervised Category Learning
Now:
Perceptual organization:
— Gestalt Principles

— Segmentation by Clustering
+ K-Means
« Graph cuts
— Segmentation by Fitting
« Hough transform
« Fitting

Readings: F&P Ch. 14, 15.1-15.2

www.robots.ox.ac.uk/%7Efergus/

Burl, et al. Faces, Moto

Waber, et al. | 200 ~ 400 Spotted

Fergus, ot al. Airplanes, Cars

)

Segmentation and Line Fitting Segmentation and Grouping

* Gestalt grouping * Motivation: vision is often = Grouping (or clustering)
simple inference, but for — collect together tokens that
* K-Means segmentation “belong together”
 Graph cuts Obtain a compact * Fitting
representation from an - associate a model with
* Hough transform image/motion tokens
i itti sequence/set of tokens - Issues
« lterative fitting q o « which model?
Should support appllcatlon « which token goes to which
Broad theory is absent at element?
present « how many elements in the
model?

11



General ideas

» Tokens * Bottom up
— whatever we need to segmentation
group (pixels, points, — tokens belong together
surface elements, etc., because they are
etc.) locally coherent
» Top down » These two are not
segmentation mutually exclusive

— tokens belong together
because they lie on the
same object

,
: & s 2
i ' " n®
0 . - - L
Je 8, .t r“}“.?
. h
a_By
\ w
. i

Why do these tokens belong together?

What is the figure?

Luterpreting insages by propagating
ayesian elbefs

Basic ideas of grouping in

humans
* Figure-ground « Gestalt properties
discrimination — A series of factors
— grouping can be seen affect whether
in terms of allocating elements should be
some elements to a grouped together

figure, some to ground
— impoverished theory

|| e o o o o Notgoped

| o e e ® & Proximity

| o o] [ ] [ ] Q o] | Similarity

|- - §) ) = -|Si.ulilarjl_\«'

‘ \ I‘ 'b ". k l‘ Common Fate

D CHID A
e @ DG D

Common Region
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Parallelism
Symmetry
e ‘ Continuity
‘ [ Closure
—
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Occlusion is an important cue in grouping.

Consequence:
Groupings by Invisible Completions

A” B'
¢ 9 J

13



And the famous...

And the famous invisible dog eating
under a tree:

» We want to let machines have these
perceptual organization abilities, to support
object recognition and both supervised and
unsupervised learning about the visual
world.

Segmentation as clustering

« Cluster together (pixels, tokens, etc.) that belong
together...
« Agglomerative clustering
— attach closest to cluster it is closest to
— repeat
« Divisive clustering
— split cluster along best boundary
- repeat
« Dendrograms
- vyield a picture of output as clustering process continues

Clustering Algorithms

Algorithm 15.3: Aggomerat duttenisg o durtaing by margng

Algorithn 18, D clustaing o chetwng by At

distance

14



* Choose a fixed number of
clusters

¢ Choose cluster centers and
point-cluster allocations to
minimize error

« can’t do this by search,
because there are too
many possible allocations.

K-Means

« Algorithm
— fix cluster centers; allocate
points to closest cluster
— fix allocation; compute best
cluster centers
x could be any set of
features for which we can
compute a distance
(careful about scaling)

2
> 2 -al
ieclusters | j eelements of i'th cluster

K-Means

Algorithm 155 Custaing by K-Mens

Image Clusters on intensity (K=5) Clusters on color (K=5)

K-means clustering using intensity alone and color alone

K-means using
color alone,
11 segments.

Color alone
often will not
yeild salient segments!

Clusters on color

K-means using color alone, 11 segments

K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing segmentation!

Hard to pick K...

15



Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image
V:image pixels

E: connections between
pairs of nearby pixels

Graphs Representations

a 01001
b 10000
o 0000O01

c®
e 00001
d 10110

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Weighted Graphs and Their

Boundaries of image regions defined
by a number of attributes

— Brightness/color

— Texture

— Motion

— Stereoscopic depth

— Familiar configuration

[Malik]

Representations
01 3 o o
1 04 o 2
3 406 7
w o 6 0 1
o 2 710
d ) Weight Matrix
Measuring Affinity
Intensity
aty)= exp| | (100~ 100
Distance
aff(x,y):exp{—[ zgg)(HX—sz)}
Color

atoy)=oxp| | 2 (o000

Eigenvectors and affinity clusters

e Simplestidea: wewanta < This is an eigenvalue
vector a giving the problem - choose the
association between each eigenvector of A with
element and a cluster largest eigenvalue

» We want elements within
this cluster to, on the
whole, have strong affinity
with one another

* We could maximize

a'Aa
» But need the constraint

a'a=1

16



Example eigenvector
‘ points

eigenvector

matrix

Example eigenvector

points

(;\ > » eigenvector
—iNG —A

matrix

—

FIGURE 15.21° The number of clusters is

Some Terminology for Graph
Partitioning
» How do we bipartition a graph:

[Malik]

Minimum Cut

A cut of a graph G is the set of
edges S such that removal of
S from G disconnects G.

Minimum cut is the cut of
minimum weight, where
weight of cut <A,B> is given
as

W(AB)=3 WX Y)

17



Minimum Cut and Clustering

* From Khurram Hassan-Shafigue CAP5415 Computer Vision 2003

Normalized cuts

« First eigenvector of affinity * Maximize
matrix captures within cluster Ccut(A,B) CUt(A,B)
similarity, but not across cluster
difference assoc(A,V)  assoc(B,V)

* Min-cut can find degenerate where cut(A,B) is sum of weights
clusters that straddle A,B; assoc(A,V) is

sum of all edges with one end

inA.

compared to the across cluster  |-€- construct A, B such that their

difference within cluster similarity is high
) compared to their association

Write graph as V, one cluster as with the rest of the graph

A and the other as B

Instead, we’d like to maximize
the within cluster similarity

.

Drawbacks of Minimum Cut

» Weight of cut is directly proportional to the
number of edges in the cut.

0o & O
Cuts with
o o o lesser weight
000 than the
) (] ideal cut

Ideal Cut

* Siide from Khurram Hassan-Shafique CAPS415 Computer Vision 2003 |

Solving the Normalized Cut problem

« Exact discrete solution to Ncut is NP-complete
even on regular grid,
— [Papadimitriou’97]

 Drawing on spectral graph theory, good
approximation can be obtained by solving a
generalized eigenvalue problem.

[Malik]

Normalized Cut As Generalized
Eigenvalue problem

cuAB) . cufA.B)

asso€AV)  asso€B,V)

_A(O-W)A+Y) 19 O-W)a-y) T o000
KDL @-koL Y DG)

NcufAB)=

« after simplification, we get

)
Ncu(%p%, withy, e{L-b},y'DL=0.

[Malik]

Normalized cuts

« Instead, solve the generalized eigenvalue problem
max, (y" (D —W )y) subject to (y" Dy =1)
« which gives

(D-W)y =Dy

* Now look for a quantization threshold that maximizes the criterion ---
i.e all components of y above that threshold go to one, all below go to -

18



Brightness Image Segmentation

Brightness Image Segmentation

Results on color segmentation

=

Motion Segmentation with Normalized Cuts

« Networks of spatial-temporal connections:

|
|
|
T =
|
|

time->
e Motion “proto-volume” in space-time

time >

19



Comparison of Methods

Authors Matrix used Procedure/Eigenvectors used
Perona/ Freeman | Affinity A 1stx: AX = AX

Recursive procedure
Shi/Malik D-AwithDa |2 smallest generalized

degree matrix | eigenvector (D — A)x = ADx
D(i,i) = > A, j)| Also recursive

Scott/ Affinity A Finds k eigenvectors of A, forms
Longuet-Higgins | User inputsk | V- Normalizes rows of V. Forms
Q =VV’. Segments by Q.
Q(i,j)=1 -> same cluster

Ng, Jordan, Weiss | Affinity A, Normalizes A. Finds k
Userinputs k | eigenvectors, forms X.
Normalizes X, clusters rows

Nugent Stanberry UW STAT 593¢

Advantages/Disadvantages

» Perona/Freeman

— For block diagonal affinity matrices, the first
eigenvector finds points in the
“dominant”cluster; not very consistent

* Shi/Malik

— 2 generalized eigenvector minimizes affinity
between groups by affinity within each group;
no guarantee, constraints

Nugent: Stanberry UW STAT 593€

Advantages/Disadvantages

Scott/Longuet-Higgins

— Depends largely on choice of k
— Good results

Ng, Jordan, Weiss

— Again depends on choice of k

— Claim: effectively handles clusters whose
overlap or connectedness varies across clusters

Nugent Stanberry UW STAT 593E

Affinity Matrix ~ Perona/Freeman  Shi/Malik Scott/Lon.Higg

14 eigenv. 2 gen. eigenv. Q matrix

q | I ——
1 (| ..
Affinity Matrix ~ Perona/Freeman  Shi/Malik Scott/Lon.Higg
1 eigenv. 2" gen. eigenv. Q matrix
{oe ] s ==
o ] 1‘; R
1+ 7] B S g S )
Affinity Matrix ~ Perona/Freeman  Shi/Malik Scott/Lon.Higg
15t pinen, nd gen pigen Q. diuigept Stanberry UW STAT 593E
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