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Today (April 5, 2005)

 Face detection
— Subspace-based
— Distribution-based
— Neural-network based
— Boosting based

Some slides courtesy of: Baback Moghaddam, Trevor Darrell, Paul Viola



Photos of class

* \What makes detection easy or hard?
« \What makes recognition easy or hard?
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Face Detection

Goal: Identify and locate human faces in an
Image (usually gray scale) regardless of their
position, scale, in plane rotation, orientation,
pose and illumination

The first step for any automatic face recognition
system
A very difficult problem!

First aim to detect upright frontal faces with
certain ability to detect faces with different pose,
scale, and illumination

One step towards Automatic Target Recognition
or generic object recognition Where are the faces, if any?




Why Face Detection Is Difficult?

Pose: Variation due to the relative camera-face pose (frontal, 45 degree,
profile, upside down), and some facial features such as an eye or the nose
may become partially or wholly occluded.

Presence or absence of structural components: Facial features such as
beards, mustaches, and glasses may or may not be present, and there is a
great deal of variability amongst these components including shape, color,
and size.

Facial expression: The appearance of faces are directly affected by a
person's facial expression.

Occlusion: Faces may be partially occluded by other objects. In an image
with a group of people, some faces may partially occlude other faces.

Image orientation: Face images directly vary for different rotations about
the camera's optical axis.

Imaging conditions: When the image is formed, factors such as lighting
(spectra, source distribution and intensity) and camera characteristics
(sensor response, lenses) affect the appearance of a face.




Face detectors

Subspace-based
Distribution-based
Neural network-based
Boosting-based



Subspace Methods

PCA (“Eilgenfaces”, Turk and Pentland)
PCA (Bayesian, Moghaddam and Pentland)

LDA/FLD (“Fisherfaces”, Belhumeur &

Kreigman)

ICA



Principal Component Analysis
Joliffe (1986)

- data modeling & visualization tool

o discrete (partial) Karhunen-Loeve expansion
« dimensionality reduction tool R" — RM

e makes no assumption about p(x)

« if p(x) is Gaussian, then  p(x) =] [ N(yi:0,4)



Eigenfaces (PCA)

Kirby & Sirovich (1990), Turk & Pentland (1991)
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Figure 4: Standard Eigenfaces.



The benefit of eigenfaces over nearest neighbor
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Matlab experiments

Pca

Spectrum of eigen faces
eigenfaces
Reconstruction

—ace detection

—ace recognition




Matlab example

e Effect of subtraction of the mean
VAR BARLE
aEEAEPRE
W -

Without
mean
subtracted

With mean
subtracted




Eigenfaces

 Efficient ways to find nearest neighbors
o Can sometimes remove lighting effects

* \What you really want to do Is use a
Bayesian approach...



Eigenfaces
Turk & Pentland (1992)




Eigenfaces

Photobook (MIT)




Subspace Face Detector

 PCA-based Density Estimation p(x)
 Maximum-likelihood face detection based on DIFS + DFFS
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Moghaddam & Pentland, “Probabilistic Visual Learning for Object Detection,” ICCV’95.
http://www-white.media.mit.edu/vismod/publications/techdir/TR-326.ps.Z



Subspace Face Detector

 Multiscale Face and Facial Feature Detection & Rectification

g Multiscale
Head Search

(o)) ()

Moghaddam & Pentland, “Probabilistic Visual Learning for Object Detection,” ICCV’95.
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Distribution-Based Face Detector

» Learn face and nonface models from examples [Sung and Poggio 95]

o Cluster and project the examples to a lower dimensional space using
Gaussian distributions and PCA

» Detect faces using distance metric to face and nonface clusters
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Distribution-Based Face Detector

» Learn face and nonface models from examples [Sung and Poggio 95]

I.ﬂ“i_a_g{': Output

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern




Neural Network-Based Face Detector

* Train a set of multilayer perceptrons and arbitrate
a decision among all outputs [Rowley et al. 98]

Input image pytamid  Exiacled window Cotiecled lighting  Higogiam squalized Receptive fiskls _
(20 by 20 pixe k) Hiddeh units

n

/5 8/1-- E %[E%L 8\

E.'II r: ‘ \Il\ul Hetwoik /4 - . '3\:3111]:-:1
|'.J.'II L = H:Ir_.ﬂ,.-"—_ '-IIII Inpui i jl, [:_] ﬂgﬂ I}DE{:

|'II,III "' ﬂﬁy\ ——= & & ® —':'b-'" 20 Eﬂlgﬂg ggg
l!','rl' ‘l/‘& C 1 ]:ﬂ'.tel e \[.:]:__l[j

|II |III i . o r'-
/f ~
™

L/ NI

Piepioce=ing Meuizal nstwcuk

F

< H" 3}%\
1
\



http://www.ius.cs.cmu.edu/demos/facedemo.html

CMU's Face Detector Demo

This is the front page for an interactive WWW demonstration of a face detector developed here at CMU. A detailed
description of the system is available. The face detector can handle pictures of people (roughly) facing the
camera in an (almost) vertical orientation. The faces can be anywhere inside the image, and range
in size from at least 20 pixels hight to covering the whole image.

Since the system does not run in real time, this demonstration is organized as follows. First, you can submit an image to be
processed by the system. Your image may be located anywhere on the WWW. After your image is processed, you will be
informed via an e-mail message.

After your image is processed, you may view it in the gallery (gallery with inlined images). There, you can see your image,
with green outlines around each location that the system thinks contains a face. You can also look at the results of the system
on images supplied by other people.

Henry A. Rowley (har@cs.cmu.edu)
Shumeet Baluja (baluja@cs.cmu.edu)

Takeo Kanade (tk@cs.cmu.edu)



Example CMU face detector results

Input

All images from: http://www.1us.cs.cmu.edu/demos/facedemo.html
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The basic algorithm used for face detection
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Preprocessing Meural network

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



Oval mazk for ignoring
background pixels:

Original window:

Best fit linesr function:

Lighting corrected window:
{linear function subitracted )

1 ] 1®

3

Histogram equalized window:
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The steps in preprocessing a window. First, a linear function is fit to the intensity values in the window,

and then subtracted out, correcting for some extreme lighting conditions. Then, histogram equalization is
applied, to correct for different camera gains and to improve contrast. For each of these steps, the mapping
Is computed based on pixels inside the oval mask, while the mapping is applied to the entire window.

From: http://www.ius.cs.cmu.edu/IUS/har2/harlwww/CMU-CS-95-158R/



The basic algorithm used for face detection
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From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



Backprop Primer - 1
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Figure 2.1: A three-layer network to solve the ror problem with weights produced
by back-propagation.



Backprop Primer - 2
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Figure 2.2: A plot of the most commonly used back-propagation activation function,
1/(1+ e %)



Backprop Primer - 3

We will now look at the formulas for adjusting the weights that lead mto the output units of a
back-propagation network. The actual activation value of an cutput unit, k, will be o, and the target for umt,

Iz, wrll be . First of all there 12 a term in the formula for ’Sk the error sigral |

Oy = (f — o) (nety). (2.3)
where {' 15 the denvative of the activation function, £ If we use the usual activation function:
1
1+ g0k,
the dertwative tertn is:
opl1—oy ) (2.4)

The formula to change the weight, Wi between the output unit, k, and urt § 15
W € Wy H g o (2.5)

where 1 12 sotne relatvely small posttive constant called the fearsing raie | With the netwotlo in 2.5 wath n =



Images with all the above threshold detections indicated by boxes.

From: http://www.ius.cs.cmu.edu/IUS/har2/harlwww/CMU-CS-95-158R/



Example face images, randomly mirrored,
rotated, translated, and scaled by small
amounts (photos are of the three authors).

o e e e
e o] o s o
Pafrerarair

From: http://www.ius.cs.cmu.edu/IUS/har2/harlwww/CMU-CS-95-158R/




During training, the partially-trained system is applied to images of scenery which do not
contain faces (like the one on the left). Any regions in the image detected as faces (which
are expanded and shown on the right) are errors, which can be added into the set of

negative training examples.

From: http://www.ius.cs.cmu.edu/IUS/har2/harlwww/CMU-CS-95-158R/
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The framework used for merging multiple detections from a single network: A) The detections
are recorded in an image pyramid. B) The detections are ““spread out" and a threshold is
applied. C) The centroids in scale and position are computed, and the regions contributing to
each centroid are collapsed to single points. In the example shown, this leaves only two
detections in the output pyramid. D) The final step is to check the proposed face locations for
overlaps, and E) to remove overlapping detections if they exist. In this example, removing the
overlapping detection eliminates what would otherwise be a false positive.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/




in an image pyramid) Metwork 2's detections (in an image pyramicl)

S

AND

_; False detect
Result of AND (falze detections eliminated)
I
From: —
http://www.ius.cs.cmu.e ) =],
du/IUS/har2/har/www/C ’ -
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-

ANDiINg together the outputs from two networks over different positions and
scales can improve detection accuracy.



Metwork 1 Face at Sama Scale MNetwork 2

O 249

Error rates (vertical axis) on a small test resulting from adding noise to various portions of the input image
(horizontal plane), for two networks. Network 1 has two copies of the hidden units shown in Figure 1 (a
total of 58 hidden units and 2905 connections), while Network 2 has three copies (a total of 78 hidden
units and 4357 connections).

The networks rely most heavily on the eyes, then on the nose, and then on the mouth (Figure 9).
Anecdotally, we have seen this behavior on several real test images. Even in cases in which only one eye
Is visible, detection of a face is possible, though less reliable, than when the entire face is visible. The
system is less sensitive to the occlusion of features such as the nose or mouth.

From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/



ROC (receiver operating
characteristic) curve
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ROC (receiver operating
characteristic) curve

=
o
o

Percent correct detection

O Percent false detections 100

Realistic examples



ROC (receiver operating
characteristic) curve

Percent correct detection

O Percent false detections 100

Ideal



Fraction of Faces Detected
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From: http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/
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Today (April 5, 2005)

e Face detection

— Boosting based

Some slides courtesy of: Baback Moghaddam, Trevor Darrell, Paul Viola



Rapid Object Detection Using a Boosted
Cascade of Simple Features

Paul Viola  Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL



Face Detection Example

- Security Systems
- Video Compression
- Image Database Analysis

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Related Work

Face detectors:

— Sung and Poggio ’98 (MIT)

— Rowley, Baluja and Kanade 98 (CMU)

— Schneiderman and Kanade 00 (CMU)

— Many others: Cal Tech, UIUC, MIT Media Lab

Feature-based approach to detection
— Papageorgiou and Poggio ’98 (MIT)
AdaBoost for feature selection
— Tieu and Viola ’00 (MIT)

Hierarchy of classifiers
— Romdhani, Torr, Scholkopf, Blake 01 (Microsoft)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



The Classical Face Detection Process
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Viola and Jones, Robust object detection using a boosted cascade of simple fea?urés,




Classifier 1s Learned from Labeled Data

{78
=l

e Training Data
— 5000 faces
o All frontal

— 108 non faces

— Faces are normalized
e Scale, translation

e Many variations
— Across individuals
— IHllumination

— Pose (rotation both in plane and out)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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What Is novel about this approach?

Feature set (... IS huge about 16,000,000 features)
Efficient feature selection using AdaBoost
New Image representation: Integral Image

Cascaded Classifier for rapid detection
— Hierarchy of Attentional Filters

The combination of these ideas yields the fastest
known face detector for gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Image Features

“Rectangle filters”
Similar to Haar wavelets
Differences between sums

of pixels in adjacent
rectangles

0(x) = { +1 if £(x) > 6,

-1 otherwise

160,000 x100 =16,000,000
Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Integral Image

« Define the Integral Image

I'(x,y)=Zl(x',y')

e Any rectangular sum can be
computed in constant time:

D=1+4-(2+3)
=A+(A+B+C+D)-(A+C+ A+B)

=D

* Rectangle features can be computed
as differences between rectangles




Huge “Library” of Filters
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Constructing Classifiers

 Perceptron yields a sufficiently powerful
classifier

C(X)= «9(2 a;h (X) + bj

o Use AdaBoost to efficiently choose best
features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Initial uniform weight
AdaBOOSt on training examples

(Freund & Shapire ’95)

f (X) =0 Zat ht (X) weak classifier 1 /
t

-
—
— -

—
———
—

Incorrect classifications
o, = 0.5 |()g error, re-weighted more heavily
1—error,
weak classifier 2 \
] WI e_yiatht(xi)
I _ t-1
Wt

Z Wti_le—}’i“tht (%)
i

weak classifier 3

Final classifier is weighted
combination of weak classifiers

Viola and Jones, Robust object detection using a boosted cascade of simple features, CV




Beautiful AdaBoost Properties

» Training Error approaches 0 exponentially

e Bounds on Testing Error Exist
— Analysis is based on the Margin of the Training Set

* Weights are related the margin of the example
— Examples with negative margin have large weight

sz)Ex Ie?] V(V)I('Sh p03|t|vemn:ra]lr yge §mai\?/elg)fl1lt(83 (x )

C(x)=9(f(x))

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Ada-Boost Tutorial

e Given a Weak learning algorithm

— Learner takes a training set and returns the best
classifier from a weak concept space
 required to have error < 50%

 Starting with a Training Set (initial weights 1/n)
— Weak learning algorithm returns a classifier

— Rewelght the examples
% g DW= > w,

» Weight on correct examples is decreased
» Weight on errors is decreased \Errors JeCorrect

 Final classifier is a weighted majority of Weak
Classifiers
— Weak classifiers with low error get larger weight

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Review of AdaBoost (Freund & Shapire 95)

*Given examples (X4, ¥), ---, (Xn» Yn) Where y; = 0,1 for negative and positive examples
respectively.
sInitialize weights wy_, ; = 1/N

eFort=1, ..., T N
«Normalize the weights, w,;=w;;/2 jV—ViJ

Find a weak learner, i.e. a hypothesis, h,(x) with weighted error less than .5
«Calculate the error of h;: e;= 2 wy; | hy(x;) - ;i |

Update the weights: w;; = w,; B{9) where B, = e,/ (1- ) and d; = 0 if example x; is
classified correctly, d; = 1 otherwise.

*The final strong classifier is
T

.
0 = {1 If Z ah(x)>05% o

0 otherwise
where o, = log(1/ B))
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



adaBoost live demo



AdaBoost for Efficient Feature Selection

e QOur Features = Weak Classifiers

e For each round of boosting:
— Evaluate each rectangle filter on each example
— Sort examples by filter values

— Select best threshold for each filter (min error)
 Sorted list can be quickly scanned for the optimal threshold

— Select best filter/threshold combination

— Weight on this feature is a simple function of error rate
— Reweight examples

— (There are many tricks to make this more efficient.)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

Rz cunee for 200 featu e claszsifier
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Trading Speed for Accuracy

e Given a nested set of classifier

% False Pos

50

hypothesis classes ;

—

99

7

% Detection

50

e Computational Risk Minimization

T T T
IMAGE - —»( Classifier 2 FACE
SUB-WINDOW

l F l F F
NON-FACE NON-FACE NON-FACE
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Experiment: Simple Cascaded Classifier

Rz cunves comparing cascaded clazsifier to monalithic clazsifer

! ! ! ! ! - I--—F
|I| ................................................................................................ —
T
[ =
2
o
LT = -
o
sl
o
2
EU.?E" ........... e [ e Eemimemamaa T . e mamamaa —

O7FF-----e-- ............ ............. ............ ............ ............ ............ ........... -
065 _,,. ........... , .......... -
— Cazcaded =at of 10 X—featum cla==ifiarz
: : : — — X0 fegtume cla=sifier
LG 1 1 1 I I I I
a 0.5 1 1.5 b 25 3 3.5 4
Bka positive 1ata !

¥ 10

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Cascaded Classifier

50% 20% 2%
IMAGE — > —> —»( 20 Features) ——» FACE
SUB-WINDOW

lF lF lF

NON-FACE NON-FACE NON-FACE

o A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

e A5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)

— using data from previous stage.

e A 20 feature classifier achieve 100% detection
rate with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



A Real-time Face Detection System

faces

Training non-faces: 350 million sub-
windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,
25, 25, 50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Accuracy of Face Detector

Performance on MIT+CMU test set containing 130 images with
507 faces and about 75 million sub-windows.

ROC curve far face detector with step size =1.0
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Comparison to Other Systems

False Detections

Detector

10

31

50

65

/8

95

110

167

Viola-Jones

76.1

88.4

91.4

92.0

92.1

92.9

93.1

93.9

Viola-Jones
(voting)

81.1

89.7

92.1

93.1

93.1

93.2

93.7

93.7

Rowley-Baluja-
Kanade

83.2

86.0

89.2

90.1

Schneiderman-
Kanade

94.4

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Speed of Face Detector

Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium lll, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Output of Face Detector on Test Images
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More Examples




Video Demo
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Conclusions

* We [they] have developed the fastest known
face detector for gray scale images

» Three contributions with broad applicability
— Cascaded classifier yields rapid classification

— AdaBoost as an extremely efficient feature
selector

— Rectangle Features + Integral Image can be
used for rapid image analysis

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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