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Medical Imaging



Analysis + Visualization



Medical Vision

Surgical planning and 
navigation

Simulation

Population modeling



Conventional Surgery: See the 
surface

Provided by Nakajima, Atsumi et al.



Image Guided Surgery: See 
under the surface



Intelligently aiding the 
surgeon

• Convert medical images into models of 
patient’s:
– Structural anatomy
– Functional anatomy
– Vascular structure 



Example patient specific models
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Functional information



Visualizing the surgical site

• Augmented reality visualizations
– combine with real imagery

• Surgical guidance
– planning and navigation

• Simulation of surgical navigation
– Use image information for diagnostics



Augmented Reality



Multi-modal Modeling



Surgical guidance

Joint with Brigham and Women’s Hospital



Simulation: 
Virtual Endoscopy



Virtual Endoscopy

Joint with Brigham and Women’s Hospital



Population Studies

How does the brain develop?

How does a disease affect 
anatomical shape? 



Hippocampus in Schizophrenia 

Joint with Brigham and Women’s Hospital and 



Cortical Thickness 
Cortical thickness in Alzheimer’s disease

Joint with Mass General Hospital



fMRI Analysis

• Brain activation
• Faces vs. other objects

Fusiform 
“Face area”

94%, p< .03

Joint with Mass General Hospital and BCS, MIT



Back to Visualization



Methods

• Segmentation

• Shape Analysis

• DTI Analysis



Image interpretation:              
voxel classification

• Measure distribution of intensities for each class
• Classify each voxel based on its intensity



Problem: Bias (gain) field



Solution: EM segmentation 
[Wells 1994] 

• If one knew the gain field 
– correct image and use standard statistical methods

• If one knew the tissue types
– could predict the image and find the gain field correction

• Solution: 
– Expectation Maximization (EM) method
– iteratively solve for gain field and tissue class using 

probabilistic models



• Observed Variables
– log transformed intensities in image

• Hidden Variables
– indicator variables for classification

• Model Parameters 
– the slowly varying corrupting bias field

(                      refer to variables at voxel s in image)
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EM-Segmentation



EM-segmentation

Estimate intensity correction using 
residuals based on current posteriors.

Compute tissue posteriors using 
current intensity correction.

M-Step

E-Step
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EM Segmentation



Handling local interactions: 
Markov Random Fields

• Prior in EM-Segmentation:
– Independent and Spatially Stationary

• Markov Random Field (MRF) 
– probability model on a lattice
– partially relaxes independence assumption to allow 

interactions between neighbors 
– used in image restoration [Geman&Geman 84]

• Use mean field approximation for MAP 
estimation of the label-map



M-Step

E-Step

Estimate Bias 

Image

Correct 
Intensities

Estimate Tissue
Probability

Label Map

EM-MF Algorithm [Kapur 1998]

MF: Regularize 
Weights



Example Results

Noisy MRI EM Segmentation EM-MF Segmentation



Posterior Probabilities

Gray matterWhite matter

EM

EM-MF



Evolution of the Model 
[Pohl 2002]

EM Algorithm

P(I | T, B)W(T):=

T - Labelmap
I  - Log Image
B - Image Inhomogeneities

New E-Step:

MF

· exp[-Energy(T | Neighbors) ] ·P(T)Px(T)

Local Prior



Segmentation of 31 Structures 
[Pohl 2004]



Segmentation of 31 Structures

Upper Front 



Segmentation of 31 Structures

Lower Front 



Segmentation of 31 Structures

Ventricles 



Boundary Localization

• Active Contours, ‘Snakes’, Level Sets





Shape Prior for Segmentation 
[Leventon 2001]

• Train on a set of shapes
– Mean shape 
– PCA-based model of variation

• Bias the segmentation towards likely shapes



• The training set, T, consists of a set of 
surfaces:  T = {u1, u2, …, un }

T = { , …}

• The mean shape

µ =

Training Data



Principal Modes of Variation
(using PCA)

1st Mode 2nd Mode

3rd Mode 4th Mode



Shape Distribution





Modified Evolution Equation



Corpus Callosum Segmentation



Corpus Callosum Segmentation



Spine Modes

• 3D Models of seven thoracic vertebrae (T3-T9)



Spine Mean Shape



Spine 1st Mode of Variation



Segmentation of the Vertebrae



Comparison to human expert

Leventon



Segmentation Summary

• EM for bias field correction

• MRFs for spatial priors on image labelings

• Shape and appearance priors for segmentation



Learning Shape from Images

• Building quantitative models of natural shapes 
and their variability from images.

• Creating useful representations and 
visualizations of the learned concepts.



Neuroimaging Studies

How does the brain develop?
How does a disease affect its structure and function?

Learn from observing the population.



Problem:

Given two (small) sets of shapes, 
what are the differences, if any?

Schizophrenic

Normal



Solution

Discriminative direction



Challenges

• Complexity of shapes
– rich representations
– classification framework

• Visualization of the statistical model
– discriminative direction

• High dimensionality of data
– need less data than suggested by 

conventional analysis



1. Feature extraction

2. Statistical modeling

3. Classifier analysis
– discriminative direction
– statistical significance

f(x)

Analysis Framework

x



Discriminative direction 
[Golland 2001]

• Linear case

• Discriminative direction is w.

• General case: search for direction dx that 
minimizes irrelevant changes with respect to f(x).

( )f b= 〈 ⋅ 〉 +x x w  

Move the input example towards the other 
class without introducing irrelevant changes.



Study of shape

Hippocampus shape in schizophrenia



fMRI Analysis [Golland et al 2003]

• Brain activation
– fMRI analysis
– visual stimuli

• Faces vs. other objects Fusiform 
“Face area”

94%, p< .03



DTI: Neural Structure and MRI

• MRI signal is from protons in water
• Membranes restrict water diffusion
• Diffusion causes MRI signal loss
• 3D shape of water diffusion

Higher diffusion
along fiber

Lower diffusion 
across fiber

axons



Diffusion tensor MRI

• Complex data can only be partially visualized
– Show subset of diffusion measurements (eigenvector)



DT-MRI Tractography    

H.J. Park, M.E. Shenton, C.-F. Westin



Issues in Tractography

• Single path: 
– shows strongest connection only

• Errors accumulate
• Fiber crossing: 

– ambiguous path due to local decisions



Diffusion-Based Connectivity 
[O’Donnell 2002]

• Use anisotropic diffusion equation
– Sources and sinks in the tensor field 
– Steady-state concentration and flow

• Flow along a path reflects connectivity

∫
S

T dstj ||

flow vector unit tangent vector

j D u= − ∇

the diffusion tensor



Steady-State Flow

final
concentration

anatomy flow magnitude

sink
source



Diffusion-Based Connectivity

• Source: motor fMRI 
• Sink: corticospinal tract

Flow



Distance-Based Connectivity
[O’Donnell 2002]

• Connectivity should be proportional to distance in some 
metric space

• Probabilistic interpretation:

2| | T
Gv v Gv=

Diffusion Tensor Metric Tensor

D 1−= DG

vDvvp T 1))(ln( −∝



initial point

Distance Map
• Input: 

– Riemannian metric tensor G
– initial point

• Output: 
– geodesic paths
– distances between points



Distance-Based Connectivity

• Proportional to length of the geodesic
• Normalize by Euclidean length

Geodesic

Euclidean

L
L

C =



Distance-Based Connectivity
• Computed connectivity measure in 3D
• Tractography: highest-connectivity region



Multi-modal Pre-operative model



Visualization of DTI and fMRI



Summary

• Interesting, hard problems looking for 
principled methods

• Methods
– Segmentation
– Shape analysis
– fMRI, DTI analysis

• Applications
– Surgical planning
– Neuroscience


