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Medical Imaging
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Analysis + Visualizat
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Medical Vision

Surgical planning and
navigation
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Conventional Surgery: See the
surface

Provided by Nakajima, Atsumi et al.
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Image Guided Surgery: See
under the surface
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Intelligently aiding the
surgeon

e Convert medical images into models of
patient’s:
— Structural anatomy
— Functional anatomy
— Vascular structure
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Example patient specific models
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Functional information
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Visualizing the surgical site

e Augmented reality visualizations
— combine with real imagery

e Surgical guidance
- planning and navigation

e Simulation of surgical navigation
- Use image information for diagnostics
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Augmented Reality




Multi-modal Modeling
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Surgical guidance

@% Joint with Brigham and Women’s Hospital
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Simulation:
Virtual Endoscopy
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Virtual Endoscopy

Joint with Brigham and Women’s Hospital
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Population Studies
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How does the brain develop?

How does a disease affect
anatomical shape?
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Hippocampus in Schizophrenia

Joint with Brigham and Women’s Hospital and
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Cortical Thickness

Cortical thickness in Alzheimer’s disease

Joint with Mass General Hospital
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fMRI Analysis

e Brain activation
e Faces vs. other objects

Fusiform
“Face area”’

94%, p< .03

Joint with Mass General Hospital and BCS, MIT
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Back to Visualization
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Methods

e Segmentation
e Shape Analysis

e DTI Analysis
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Image interpretation:
voxel classification

e Measure distribution of intensities for each class
e Classify each voxel based on its intensity
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Solution: EM segmentation
[Wells 1994]

e If one knew the gain field
— correct image and use standard statistical methods

e If one knew the tissue types
— could predict the image and find the gain field correction

e Solution:
- Expectation Maximization (EM) method

— iteratively solve for gain field and tissue class using
probabilistic models
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EM-Segmentation

e Observed Variables Y

- log transformed intensities in image

e Hidden Variables W

— indicator variables for classification

e Model Parameters D
— the slowly varying corrupting bias field
( YS ,I/VS : bS refer to variables at voxel s in image)
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EM-segmentation

E-Step

Compute tissue posteriors using
M-Step

current intensity correction.
PYW)=PW|Y,b" ")
‘L Estimate intensity correction using
residuals based on current posteriors.

b = argmax £, [log P(b'| W,Y)]
o

e
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EM Segmentation
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Handling local interactions:
Markov Random Fields

e Prior in EM-Segmentation:
- Independent and Spatially Stationary

e Markov Random Field (MRF)

— probability model on a lattice

— partially relaxes independence assumption to allow
interactions between neighbors

— used in image restoration [Geman&Geman 84]

e Use mean field approximation for MAP
estimation of the label-map

e
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EM-MF Algorithm [Kapur 1998]




Example Results

EM Segmentation EM-MF Segmentation

Noisy MRI
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Posterior Probabilities

EM

White matter Gray matter
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Evolution of the Model
[Pohl 2002]

New E-Step:

WOl P.(T) 8 P |T,B) § exp[-Energy(T | Neighbors) |

T - Labelmap
I - Log Image
B - Image Inhomogeneities
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Segmentation of 31 Structures
[Pohl 2004 ]
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Segmentation of 31 Structures

Upper Front
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Segmentation of 31 Structures

Lower Front
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Segmentation of 31 Structures

Ventricles
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Boundary Localization

e Active Contours, ‘Snakes’, Level Sets
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Geodesic Active Contours

Snake methodology defines an energy function E(C) over a curve C as

E@C) =5 [1c'@Pda— A [ IV1C@)lda
Caselles, ¢t 2f. reduced the mummmuzation problem to the expression.

min [ g(IVI(C@))) I€"(@)] da

where £ 15 a function of the image gradient of the form TreIE

The followimg curve evolution equation can be dertved usmg Euler-Lagrange.

8(5(:] = gsN — (Vg - NN

where A 15 the curvature and i1s the nornmal.

By defining an embeddmg function i: of the curve ), the update equation for
the lngher dimensional surface 15 given by (Osher, Sethian '88):

du
Ezgm|?u|—|—?u-?g
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Shape Prior for Segmentation
[Leventon 2001]

e Train on a set of shapes
— Mean shape
— PCA-based model of variation

e Bias the segmentation towards likely shapes
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Training Data

e The training set, T, consists of a set of
surfaces: T = {u,, U,, ..., U, }
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Principal Modes of Variation
(using PCA)
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Shape Distribution
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Regularization

Prior Model of Curvature
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Histograms of the Curvature of the training objects
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Modified Evolution Equation

CSAIL
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Corpus Callosum Segmentation
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Corpus Callosum Segmentation
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Spine Modes

e 3D Models of seven thoracic vertebrae (T3-T9)
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Spine Mean Shape
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Spine 1st Mode of Variation
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Segmentation of the Vertebrae
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Comparison to human expert
5 Discrepancy in Segmentations
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Segmentation Summary

e EM for bias field correction
e MRFs for spatial priors on image labelings

e Shape and appearance priors for segmentation

CSAIL



Learning Shape from Images

e Building quantitative models of natural shapes
and their variability from images.

e Creating useful representations and
visualizations of the learned concepts.
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Neuroimaging Studies

How does the brain develop?
How does a disease affect its structure and function?

Learn from observing the population.
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Problem:

Given two (small) sets of shapes,
what are the differences, if any?
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Solution

Discriminative direction
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Challenges

e Complexity of shapes
— rich representations
— classification framework

e \isualization of the statistical model
— discriminative direction

e High dimensionality of data

— need less data than suggested by
conventional analysis
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Analysis Framework

1. Feature extraction

2. Statistical modeling
f(x)

3. Classifier analysis
— discriminative direction
— statistical significance

>
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Discriminative direction
[Golland 2001]

Move the input example towards the other
class without introducing irrelevant changes.

e |Linear case
f(x) = & xwii+ b

e Discriminative direction is w.

e General case: search for direction dx that
minimizes irrelevant changes with respect to f(x).
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Study of shape

Hippocampus shape in schizophrenia
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fMRI Analysis [Golland et al 2003]

e Brain activation
- fMRI analysis : ’
— visual stimuli

e Faces vs. other objects Fusiform

“Face area™

949%, p< .03
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DTI: Neural Structure and MRI

e MRI signal is from protons in water
e Membranes restrict water diffusion
e Diffusion causes MRI signal loss

e 3D shape of water diffusion

Lower diffusio /
across flt§ ﬂ-" Higher diffusion

along fiber
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Diffusion tensor MRI

e Complex data can only be partially visualized
— Show subset of diffusion measurements (eigenvector)

CSAIL



DT-MRI Tractography

H.J. Park, M.E. Shenton, C.-F. Westin
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Issues in Tractography

e Single path:
— shows strongest connection only
e Errors accumulate

e Fiber crossing:
— ambiguous path due to local decisions
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Diffusion-Based Connectivity
[O'Donnell 2002]

. U_se anisotropic _dlffu_smn equatlop ] = - DNy
Sources and sinks in the tensor field [?

— Steady-state concentration and flow
the diffusion tensor

e Flow along a path reflects connectivity

3./ t|ds
V4

flow vector unit tangent vector
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Steady-State Flow

v’ ‘ "‘h'
\ -‘-j-__.;/ final

concentration

sink &
rce

CSAIL

flow magnitude




Diffusion-Based Connectivity

* Source: motor fMRI
 Sink: corticospinal tract
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Distance-Based Connectivity
[O'Donnell 2002]

e Connectivity should be proportional to distance in some
metric space 2 —..T
v];=v Gy

e Probabilistic interpretation:

In(p(v)) U viDly

10 >

Diffusion Tensor Metric Tensor
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Distance Map

e Input:

— Riemannian metric tensor G
— initial point

e QOutput:

— geodesic paths

— distances between point:

e
R
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Distance-Based Connectivity

e Proportional to length of the geodesic
e Normalize by Euclidean length

L

C — ““FEuclidean

Geodesic
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Distance-Based Connectivity

e Computed connectivity measure in 3D
e Tractography: highest-connectivity region
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Multi-modal Pre-operative model

CSAIL



Visualization of DTI and fMRI

CSAIL



Summary

e Interesting, hard problems looking for
principled methods

e Methods

— Segmentation
— Shape analysis
- fMRI, DTI analysis

e Applications
— Surgical planning
— Neuroscience
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