Computer Vision for Medical Imaging

Polina Golland

CSAIL/EECS

Medical Vision Group

Polina Golland, Eric Grimson Sandy Wells, John Fisher And many, many students

Medical Imaging

Analysis + Visualization

Medical Vision

Surgical planning and navigation

Simulation

Population modeling

Conventional Surgery: See the surface

Provided by Nakajima, Atsumi et al.

Image Guided Surgery: See under the surface

Intelligently aiding the surgeon

- Convert medical images into models of patient's:
 - Structural anatomy
 - Functional anatomy
 - Vascular structure

Example patient specific models

Functional information

Visualizing the surgical site

- Augmented reality visualizations
 - combine with real imagery
- Surgical guidance
 - planning and navigation
- Simulation of surgical navigation
 - Use image information for diagnostics

Augmented Reality

CSAIL

Multi-modal Modeling

Surgical guidance

Joint with Brigham and Women's Hospital

Simulation: Virtual Endoscopy

Virtual Endoscopy

Joint with Brigham and Women's Hospital

Population Studies

How does a disease affect anatomical shape?

Hippocampus in Schizophrenia

Joint with Brigham and Women's Hospital and

Cortical Thickness

Cortical thickness in Alzheimer's disease

Joint with Mass General Hospital

fMRI Analysis

- Brain activation
- Faces vs. other objects

94%, *p*< .03

Joint with Mass General Hospital and BCS, MIT

Back to Visualization

Methods

- Segmentation
- Shape Analysis
- DTI Analysis

Image interpretation: voxel classification

- Measure distribution of intensities for each class
- Classify each voxel based on its intensity

Problem: Bias (gain) field

Solution: EM segmentation [Wells 1994]

- If one knew the gain field
 - correct image and use standard statistical methods
- If one knew the tissue types
 - could predict the image and find the gain field correction
- Solution:
 - Expectation Maximization (EM) method
 - iteratively solve for gain field and tissue class using probabilistic models

EM-Segmentation

- Observed Variables Y
 - log transformed intensities in image
- Hidden Variables W
 - indicator variables for classification
- Model Parameters $\, m{b} \,$
 - the slowly varying corrupting bias field
 - ($Y_s, W_s, \boldsymbol{b}_s$ refer to variables at voxel s in image)

EM-segmentation

E-Step

Compute tissue posteriors using current intensity correction.

$$\widetilde{P}^{(t)}(W) = P(W \mid Y, \boldsymbol{b}^{(t-1)})$$

M-Step

Estimate intensity correction using residuals based on current posteriors.

$$\boldsymbol{b}^{(t)} = \operatorname*{arg\,max}_{\boldsymbol{b}'} E_{\widetilde{P}^{(t)}}[\log P(\boldsymbol{b}'|W,Y)]$$

EM Segmentation

Handling local interactions: Markov Random Fields

- Prior in EM-Segmentation:
 - Independent and Spatially Stationary
- Markov Random Field (MRF)
 - probability model on a lattice
 - partially relaxes independence assumption to allow interactions between neighbors
 - used in image restoration [Geman&Geman 84]
- Use mean field approximation for MAP estimation of the label-map

EM-MF Algorithm [Kapur 1998]

Example Results

Noisy MRI EM Segmentation EM-MF Segmentation

Posterior Probabilities

EM

EM-MF

White matter Gray matter

Evolution of the Model [Pohl 2002]

New E-Step:

W(T):=
$$P_x(T) \cdot P(I | T, B)$$
 $exp[-Energy(T | Neighbors)]$ EMAlgorithmMFLocal Prior

- T Labelmap
- I Log Image
- B Image Inhomogeneities

Segmentation of 31 Structures [Pohl 2004]

CSAIL

Segmentation of 31 Structures

Upper Front

Segmentation of 31 Structures

Lower Front

Segmentation of 31 Structures

Boundary Localization

• Active Contours, 'Snakes', Level Sets

Geodesic Active Contours

- Snake methodology defines an energy function E(C) over a curve C as $E(\mathcal{C}) = \beta \int |\mathcal{C}'(q)|^2 dq \lambda \int |\nabla I(\mathcal{C}(q))| dq$
- Caselles, et al. reduced the minimization problem to the expression.

$$\min_{\mathcal{C}(q)} \int g(|\nabla I(\mathcal{C}(q))|) |\mathcal{C}'(q)| dq$$

where g is a function of the image gradient of the form $\frac{1}{1+|\nabla I|^2}$.

• The following curve evolution equation can be derived using Euler-Lagrange. $\frac{\partial \mathcal{C}(t)}{\partial t} = g\kappa \mathcal{N} - (\nabla g \cdot \mathcal{N})\mathcal{N}$

where κ is the curvature and N is the normal.

 By defining an embedding function u of the curve C, the update equation for the higher dimensional surface is given by (Osher, Sethian '88):

$$\frac{\partial u}{\partial t} = g \kappa |\nabla u| + \nabla u \cdot \nabla g$$

Shape Prior for Segmentation [Leventon 2001]

• Train on a set of shapes

- Mean shape
- PCA-based model of variation
- Bias the segmentation towards likely shapes

Training Data

 The training set, T, consists of a set of surfaces: T = {u₁, u₂, ..., u_n }

$$T = \left\{ \begin{array}{c} & & \\ & &$$

• The mean shape

$$\mu = \bigcirc$$

Principal Modes of Variation (using PCA)

Shape Distribution

A

D

Е

Regularization

Prior Model of Curvature

Histograms of the Curvature of the training objects

Modified Evolution Equation

Corpus Callosum Segmentation

Corpus Callosum Segmentation

Spine Modes

• 3D Models of seven thoracic vertebrae (T3-T9)

Spine Mean Shape

Spine 1st Mode of Variation

Segmentation of the Vertebrae

Comparison to human expert

Segmentation Summary

- EM for bias field correction
- MRFs for spatial priors on image labelings
- Shape and appearance priors for segmentation

Learning Shape from Images

• Building quantitative models of natural shapes and their variability from images.

• Creating useful representations and visualizations of the learned concepts.

Neuroimaging Studies

How does the brain develop? How does a disease affect its structure and function?

Learn from observing the population.

Problem:

Given two (small) sets of shapes, what are the differences, if any?

Solution

Discriminative direction

Challenges

- Complexity of shapes
 - rich representations
 - classification framework

Visualization of the statistical model
discriminative direction

- High dimensionality of data
 - need less data than suggested by conventional analysis

Analysis Framework

1. Feature extraction

2. Statistical modeling

- 3. Classifier analysis
 - discriminative direction
 - statistical significance

Discriminative direction [Golland 2001]

Move the input example towards the other class without introducing irrelevant changes.

- Linear case $f(\mathbf{x}) = \langle \mathbf{x} \cdot \mathbf{w} \rangle + b$
- Discriminative direction is *w*.

 General case: search for direction dx that minimizes irrelevant changes with respect to f(x).

Study of shape

Hippocampus shape in schizophrenia

fMRI Analysis [Golland et al 2003]

- Brain activation
 - fMRI analysis
 - visual stimuli
- Faces vs. other objects

94%, *p*< .03

DTI: Neural Structure and MRI

- MRI signal is from protons in water
- Membranes restrict water diffusion
- Diffusion causes MRI signal loss
- 3D shape of water diffusion

Diffusion tensor MRI

- Complex data can only be partially visualized
 - Show subset of diffusion measurements (eigenvector)

DT-MRI Tractography

H.J. Park, M.E. Shenton, C.-F. Westin

Issues in Tractography

- Single path:
 - shows strongest connection only
- Errors accumulate
- Fiber crossing:
 - ambiguous path due to local decisions

Diffusion-Based Connectivity [O'Donnell 2002]

- Use anisotropic diffusion equation
 - Sources and sinks in the tensor field
 - Steady-state concentration and flow

the diffusion tensor

• Flow along a path reflects connectivity

Steady-State Flow

Diffusion-Based Connectivity

Distance-Based Connectivity [O'Donnell 2002]

- Connectivity should be proportional to distance in some metric space $|v|_G^2 = v^T G v$
- Probabilistic interpretation:

Metric Tensor

Distance Map

initial point

- Input:
 - Riemannian metric tensor G
 - initial point
- Output:
 - geodesic paths
 - distances between points

Distance-Based Connectivity

- Proportional to length of the geodesic
- Normalize by Euclidean length

 $C = \frac{L_{Euclidean}}{L_{Geodesic}}$

Distance-Based Connectivity

- Computed connectivity measure in 3D
- Tractography: highest-connectivity region

Multi-modal Pre-operative model

Visualization of DTI and fMRI

Summary

- Interesting, hard problems looking for principled methods
- Methods
 - Segmentation
 - Shape analysis
 - fMRI, DTI analysis
- Applications
 - Surgical planning
 - Neuroscience

