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Class logistics

• Tonight midnight, the take-home exam is due.
• Next week:  spring break
• Following week, on Thursday, your project 

proposals are due.
– Feel free to ask Xiaoxu or me for feedback or ideas 

regarding the project.
– Auditors are welcome to do a project, and we’ll read 

them and give feedback.

Generative Models

Bill Freeman, MIT
Some of these slides made with Andrew Blake, 

Microsoft Research Cambridge, UK

6.869 March 17, 2005 

Last class 

(a) We looked at ways to fit observations of 
probabilistic data, and EM.

(b) We’re looking at the modularized joint 
probability distribution described by 
graphical models.

Making probability distributions modular, and 
therefore tractable:

Probabilistic graphical models

Vision is a problem involving the interactions of many variables:  
things can seem hopelessly complex.  Everything is made 
tractable, or at least, simpler, if we modularize the problem.  
That’s what probabilistic graphical models do, and let’s examine 
that.

Readings:  Jordan and Weiss intro article—fantastic!
Kevin Murphy web page—comprehensive and with    

pointers to many advanced topics

A toy example

Suppose we have a system of 5 interacting variables, perhaps some are 
observed and some are not.  There’s some probabilistic relationship between 
the 5 variables, described by their joint probability,
P(x1, x2, x3, x4, x5).

If we want to find out what the likely state of variable x1 is (say, the 
position of the hand of some person we are observing), what can we do?

Two reasonable choices are:  (a) find the value of x1  (and of all the other 
variables) that gives the maximum of P(x1, x2, x3, x4, x5);  that’s the MAP 
solution.
Or (b) marginalize over all the other variables and then take the mean or the 
maximum of the other variables.  Marginalizing, then taking the mean, is 
equivalent to finding the MMSE solution.  Marginalizing, then taking the 
max, is called the max marginal solution and sometimes a useful thing to do.

To find the marginal probability at x1, we have to take this sum:
),,,,(

5432 ,,,
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If the system really is high dimensional, that will quickly become 
intractable.  But if there is some modularity in
then things become tractable again.

),,,,( 54321 xxxxxP

Suppose the variables form a Markov chain:  x1 causes x2 which causes x3, 
etc.   We might draw out this relationship as follows:

1x 2x 3x 4x 5x
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)|,,,()(),,,,( 15432154321 xxxxxPxPxxxxxP =

By the chain rule, for any probability distribution, we have:

Now our marginalization summations distribute through those terms:

),|,,()|()( 21543121 xxxxxPxxPxP=
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P(a,b) = P(b|a) P(a)

But if we exploit the assumed modularity of the probability distribution over 
the 5 variables (in this case, the assumed Markov chain structure), then that 
expression simplifies:

1x 2x 3x 4x 5x

Belief propagation
Performing the marginalization by doing the partial sums is called 
“belief propagation”.

In this example, it has saved us a lot of computation.  Suppose each 
variable has 10 discrete states.  Then, not knowing the special structure 
of P, we would have to perform 10000 additions (10^4) to marginalize 
over the four variables.
But doing the partial sums on the right hand side, we only need 40 
additions (10*4) to perform the same marginalization!

∑ ∑ ∑ ∑ ∑∑ =
1 2 3 4 55432
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1x 2x 3x 4x 5x

Another modular probabilistic structure, more common in vision 
problems, is an undirected graph:

The joint probability for this graph is given by:

),(),(),(),(),,,,( 5443322154321 xxxxxxxxxxxxxP ΦΦΦΦ=

Where                          is called a “compatibility function”.  We can 
define compatibility functions we result in the same joint probability as 
for the directed graph described in the previous slides;  for that example, 
we could use either form.

),( 21 xxΦ

Markov Random Fields

• Allows rich probabilistic models for 
images.

• But built in a local, modular way.  Learn 
local relationships, get global effects out.

MRF nodes as pixels

Winkler, 1995, p. 32

MRF nodes as patches

image patches

Φ(xi, yi)

Ψ(xi, xj)

image

scene

scene patches
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Network joint probability

scene
image

Scene-scene
compatibility

function
neighboring
scene nodes

local 
observations

Image-scene
compatibility

function

∏∏ ΦΨ=
i

ii
ji

ji yxxx
Z

yxP ),(),(1),(
,

In order to use MRFs:

• Given observations y, and the parameters of 
the MRF, how infer the hidden variables, x?

• How learn the parameters of the MRF?

Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated condtional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

• Vision applications of inference in MRF’s.
• Learning MRF parameters.

– Iterative proportional fitting (IPF)

Variational methods

• Reference:  Tommi Jaakkola’s tutorial on 
variational methods, 

http://www.ai.mit.edu/people/tommi/
• Example:  mean field

– For each node
• Calculate the expected value of the node, 

conditioned on the mean values of the neighbors.  

Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated condtional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

• Vision applications of inference in MRF’s.
• Learning MRF parameters.

– Iterative proportional fitting (IPF)

),,,,,(sumsummean 3213211
321

yyyxxxPx
xxxMMSE =

y1

Derivation of belief propagation

),( 11 yxΦ
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x1

y2

x2

y3

x3
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The posterior factorizes
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Propagation rules
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Propagation rules
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Propagation rules
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Belief propagation:  the nosey 
neighbor rule

“Given everything that I know, here’s what I 
think you should think”

(Given the probabilities of my being in 
different states, and how my states relate to 
your states, here’s what I think the 
probabilities of your states should be)

Belief propagation messages

jii =

∏∑
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To send a message:  Multiply together all the incoming 
messages, except from the node you’re sending to,
then multiply by the compatibility matrix and marginalize 
over the sender’s states. 

A message:  can be thought of as a set of weights on 
each of your possible states
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Beliefs
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To find a node’s beliefs:  Multiply together all the 
messages coming in to that node.

Belief, and message updates
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∏∑
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Optimal solution in a chain or tree:
Belief Propagation

• “Do the right thing” Bayesian algorithm.
• For Gaussian random variables over time:  

Kalman filter.
• For hidden Markov models: 

forward/backward algorithm (and MAP 
variant is Viterbi).

No factorization with loops!
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Justification for running belief propagation 
in networks with loops

• Experimental results:
– Error-correcting codes

– Vision applications

• Theoretical results:
– For Gaussian processes, means are correct.

– Large neighborhood local maximum for MAP.

– Equivalent to Bethe approx. in statistical physics.

– Tree-weighted reparameterization

Weiss and Freeman, 2000

Yedidia, Freeman, and Weiss, 2000

Freeman and Pasztor, 1999;
Frey, 2000

Kschischang and Frey, 1998;
McEliece et al., 1998

Weiss and Freeman, 1999

Wainwright, Willsky, Jaakkola, 2001

Statistical mechanics interpretation

U - TS = Free energy

U = avg. energy = 
T = temperature
S = entropy = 

,...),(,...),( 2121 xxExxp
states
∑

,...),(ln,...),( 2121 xxpxxp
states
∑−
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Free energy formulation

Defining

then the probability distribution
that minimizes the F.E. is precisely 
the true probability of the Markov network, 

)(),(,...),( 21 i
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Approximating the Free Energy

Exact:      
Mean Field Theory:    
Bethe Approximation : 
Kikuchi Approximations: 

)],...,,([ 21 NxxxpF
)]([ ii xbF

)],(),([ jiijii xxbxbF

),....],(),,(),([ , kjiijkjiijii xxxbxxbxbF

Mean field approximation to free energy
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U - TS = Free energy

The variational free energy is, up to an additive constant, equal to the 
Kllback-Leibler divergence between b(x) and the true probability, P(x).
KL divergence:   
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Setting deriv w.r.t bi=0
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j

TxxExbxb α

U - TS = Free energy

In words:  “Set the probability of each state xi at node i to be 
proportional to e to the minus expected energy corresponding to 
each state xi, given the expected values of all the neighboring 
states.”

Corresponds to eq. 18 in Jordan and Weiss ms.

Bethe Approximation
On tree-like lattices, exact formula:
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Gibbs Free Energy
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Gibbs Free Energy
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Set derivative of Gibbs Free Energy w.r.t. bij, bi terms to zero:
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Belief Propagation = Bethe

∑=
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enforce the constraints

Bethe stationary conditions = message update rules
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Belief propagation equations
Belief propagation equations come from the 

marginalization constraints.

jii

jii =
∏∑
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Results from Bethe free energy analysis

• Fixed point of belief propagation equations iff. Bethe
approximation stationary point. 

• Belief propagation always has a fixed point.
• Connection with variational methods for inference:  both 

minimize approximations to Free Energy,
– variational:  usually use primal variables.
– belief propagation: fixed pt. equs. for dual variables. 

• Kikuchi approximations lead to more accurate belief 
propagation algorithms.

• Other Bethe free energy minimization algorithms—
Yuille, Welling, etc.

Kikuchi message-update rules

i ji
=

ji ji

lk
=

Groups of nodes send messages to other groups of nodes.

Update for
messages 

Update for
messages 

Typical choice for Kikuchi cluster.



8

Generalized belief propagation
Marginal probabilities for nodes in one row 

of a 10x10 spin glass

References on BP and GBP
• J. Pearl, 1985

– classic
• Y. Weiss, NIPS 1998

– Inspires application of BP to vision
• W. Freeman et al learning low-level vision, IJCV 1999

– Applications in super-resolution, motion, shading/paint 
discrimination

• H. Shum et al, ECCV 2002
– Application to stereo

• M. Wainwright, T. Jaakkola, A. Willsky
– Reparameterization version

• J. Yedidia, AAAI 2000
– The clearest place to read about BP and GBP.

Graph cuts

• Algorithm:  uses node label swaps or expansions 
as moves in the algorithm to reduce the energy.  
Swaps many labels at once, not just one at a time, 
as with ICM.

• Find which pixel labels to swap using min cut/max 
flow algorithms from network theory.

• Can offer bounds on optimality.
• See Boykov, Veksler, Zabih, IEEE PAMI 23 (11) 

Nov. 2001 (available on web).

Comparison of graph cuts and belief 
propagation

Comparison of Graph Cuts with Belief 
Propagation for Stereo, using Identical
MRF Parameters, ICCV 2003.
Marshall F. Tappen William T. Freeman

Ground truth, graph cuts, and belief 
propagation disparity solution energies Graph cuts versus belief propagation

• Graph cuts consistently gave slightly lower energy 
solutions for that stereo-problem MRF, although 
BP ran faster, although there is now a faster graph 
cuts implementation than what we used…

• However, here’s why I still use Belief 
Propagation:
– Works for any compatibility functions, not a restricted 

set like graph cuts.
– I find it very intuitive.
– Extensions:  sum-product algorithm computes MMSE, 

and Generalized Belief Propagation gives you very 
accurate solutions, at a cost of time.
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MAP versus MMSE Show program comparing some 
methods on a simple MRF

testMRF.m

Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated condtional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

• Vision applications of inference in MRF’s.
• Learning MRF parameters.

– Iterative proportional fitting (IPF)

Vision applications of MRF’s

• Stereo
• Motion estimation
• Super-resolution
• Many others…

Vision applications of MRF’s

• Stereo
• Motion estimation
• Super-resolution
• Many others…

Motion application
image patches

image

scene

scene patches
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What behavior should we see in a 
motion algorithm?

• Aperture problem
• Resolution through propagation of 

information
• Figure/ground discrimination

The aperture problem

The aperture problem
Program demo

Motion analysis: related work

• Markov network
– Luettgen, Karl, Willsky and collaborators.

• Neural network or learning-based
– Nowlan & T. J. Senjowski; Sereno.

• Optical flow analysis
– Weiss & Adelson; Darrell & Pentland; Ju, 

Black & Jepson; Simoncelli; Grzywacz & 
Yuille; Hildreth; Horn & Schunk; etc. 

Motion estimation results
(maxima of scene probability distributions displayed)

Initial guesses only 
show motion at edges.

Iterations 0 and 1

Inference:

Image data
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Motion estimation results

Figure/ground still 
unresolved here.

(maxima of scene probability distributions displayed)

Iterations 2 and 3

Motion estimation results

Final result compares well with vector 
quantized true (uniform) velocities.

(maxima of scene probability distributions displayed)

Iterations 4 and 5

Vision applications of MRF’s

• Stereo
• Motion estimation
• Super-resolution
• Many others…

Super-resolution

• Image:  low resolution image
• Scene:  high resolution image

im
ag

e
sc

en
e

ultimate goal...

Polygon-based 
graphics 
images are 
resolution 
independent

Pixel-based images 
are not resolution 

independent
Pixel replication

Cubic splineCubic spline, 
sharpened

Training-based 
super-resolution

3 approaches to perceptual 
sharpening

(1)  Sharpening;  boost existing high 
frequencies.

(2)  Use multiple frames to obtain 
higher sampling rate in a still frame.

(3)  Estimate high frequencies not 
present in image, although implicitly 
defined.

In this talk, we focus on (3), which 
we’ll call “super-resolution”.

spatial frequency

am
pl

itu
de

spatial frequency

am
pl

itu
de
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Super-resolution: other approaches

• Schultz and Stevenson, 1994
• Pentland and Horowitz, 1993
• fractal image compression (Polvere, 1998; 

Iterated Systems)
• astronomical image processing (eg. Gull and 

Daniell, 1978;  “pixons”
http://casswww.ucsd.edu/puetter.html)

Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:  
“giraffes” and “urban skyline”.

Do a first interpolation

Zoomed low-resolution

Low-resolution

Zoomed low-resolution

Low-resolution

Full frequency original

Full freq. original
RepresentationZoomed low-freq.

True high freqs
Low-band input

(contrast normalized, 
PCA fitted)

Full freq. original
RepresentationZoomed low-freq.

(to minimize the complexity of the relationships we have to learn,
we remove the lowest frequencies from the input image, 

and normalize the local contrast level).
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Training data samples (magnified)

......

Gather ~100,000 patches

low freqs.

high freqs.

True high freqs.Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.

Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.

Example:  input image patch, and closest 
matches from database

Input patch

Closest image
patches from database

Corresponding
high-resolution

patches from database

Scene-scene compatibility function, 
Ψ(xi, xj) 

Assume overlapped regions, d, of hi-res. 
patches differ by Gaussian observation noise:

d

Uniqueness constraint,
not smoothness.
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Image-scene compatibility 
function, Φ(xi, yi)

Assume Gaussian noise takes you from 
observed image patch to synthetic sample:

y

x

Markov network

image patches

Φ(xi, yi)

Ψ(xi, xj)
scene patches

Iter. 3

Iter. 1

Belief Propagation
Input

Iter. 0

After a few iterations of belief propagation, the 
algorithm selects spatially consistent high resolution 

interpretations for each low-resolution patch of the 
input image.

Zooming 2 octaves

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204

We apply the super-resolution 
algorithm recursively, zooming 

up 2 powers of 2, or a factor of 4 
in each dimension.

True
200x232

Original
50x58

(cubic spline implies thin 
plate prior)

Now we examine the effect of the prior 
assumptions made about images on the 

high resolution reconstruction.
First, cubic spline interpolation.

Cubic spline
True

200x232

Original
50x58

(cubic spline implies thin 
plate prior)
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True

Original
50x58

Training images

Next, train the Markov network 
algorithm on a world of random noise 

images.

Markov
network

True

Original
50x58

The algorithm learns that, in such a 
world, we add random noise when zoom 

to a higher resolution.

Training images

True

Original
50x58

Training images

Next, train on a world of vertically 
oriented rectangles.

Markov
network

True

Original
50x58

The Markov network algorithm 
hallucinates those vertical rectangles that 

it was trained on.

Training images

True

Original
50x58

Training images

Now train on a generic collection of 
images.

Markov
network

True

Original
50x58

The algorithm makes a reasonable guess 
at the high resolution image, based on its 

training images.

Training images
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Generic training images
Next, train on a generic 

set of training images.  
Using the same camera 

as for the test image, but 
a random collection of 

photographs.

Cubic 
Spline

Original
70x70

Markov
net, 
training:
generic

True
280x280

Kodak Imaging Science Technology Lab test.

3 test images, 640x480, to be
zoomed up by 4 in each 
dimension.

8 judges, making 2-alternative, 
forced-choice comparisons.

Algorithms compared

• Bicubic Interpolation
• Mitra's Directional Filter
• Fuzzy Logic Filter
•Vector Quantization
• VISTA

Bicubic spline Altamira VISTA

Bicubic spline Altamira VISTA
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User preference test results

“The observer data indicates that six of the observers ranked
Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms….

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms.  However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original
scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”

Training images

Training image Processed image
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Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

• Vision applications of inference in MRF’s.
• Learning MRF parameters.

– Iterative proportional fitting (IPF)

Learning MRF parameters, labeled data

Iterative proportional fitting lets you 
make a maximum likelihood 
estimate of a joint distribution from 
observations of various marginal 
distributions.

True joint 
probability

Observed 
marginal 
distributions

Initial guess at joint probability

IPF update equation

Scale the previous iteration’s estimate for the joint 
probability by the ratio of the true to the predicted 
marginals.

Gives gradient ascent in the likelihood of the joint 
probability, given the observations of the marginals.

See:  Michael Jordan’s book on graphical models

Convergence of to correct marginals by IPF algorithm
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Convergence of to correct marginals by IPF algorithm IPF results for this example: 
comparison of joint probabilities

Initial guess Final maximum
entropy estimate

True joint 
probability

Application to MRF parameter estimation

• Can show that for the ML estimate of the clique 
potentials, φc(xc), the empirical marginals equal 
the model marginals,

• This leads to the IPF update rule for φc(xc)

• Performs coordinate ascent in the likelihood of the 
MRF parameters, given the observed data.

Reference:  unpublished notes by Michael Jordan

More general graphical models than 
MRF grids

• In this course, we’ve studied Markov chains, and 
Markov random fields, but, of course, many other 
structures of probabilistic models are possible and 
useful in computer vision.

• For a nice on-line tutorial about Bayes nets, see 
Kevin Murphy’s tutorial in his web page.

“Top-down” information:  a 
representation for image context

Images

80-dimensional 
representation

Credit: Antonio Torralba

“Bottom-up” information:  labeled 
training data for object recognition.

•Hand-annotated 1200 frames of video from a wearable webcam 
•Trained detectors for 9 types of objects: bookshelf, desk,
screen (frontal) , steps, building facade, etc.
•100-200 positive patches, > 10,000 negative patches
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Combining top-down with bottom-up: 
graphical model showing assumed 

statistical relationships between variables

Scene category

Visual “gist”
observations

Object class

Particular objects

Local image features

kitchen, office, lab, conference 
room, open area, corridor, 
elevator and street.

Categorization of new places

frame

Specific location

Location category

Indoor/outdoor

ICCV 2003 poster
By Torralba, Murphy, 
Freeman, and Rubin

Bottom-up detection: ROC curves
ICCV 2003 poster
By Torralba, Murphy, 
Freeman, and Rubin


