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What is the goal of vision?

If you are asking,
“Are there any faces in this 
image?”,
then you would probably 
want to use discriminative 
methods.



What is the goal of vision?

If you are asking,
“Are there any faces in this 
image?”,
then you would probably 
want to use discriminative 
methods.

If you are asking,
“Find a 3-d model that 
describes the runner”,
then you would use 
generative methods.



Modeling outline 

(a) So we want to look at high-dimensional 
visual data, and fit models to it;  forming 
summaries of it that let us understand what 
we see.

(b) After that, we’ll look at ways to 
modularize the joint probability distribution.



The simplest data to model:
a set of 1–d samples



Fit this distribution with a Gaussian



How find the parameters of the best-
fitting Gaussian?

Posterior probability Likelihood function Prior probability

Evidence

By Bayes rule

mean
std. dev.

data points



How find the parameters of the best-
fitting Gaussian?

Posterior probability Likelihood function Prior probability

Evidence

Maximum likelihood parameter estimation:

mean
std. dev.

data points



Derivation of MLE for Gaussians

Observation density

Log likelihood

Maximisation



Basic Maximum Likelihood Estimate 
(MLE) of a Gaussian distribution

Mean

Variance

Covariance Matrix



Basic Maximum Likelihood Estimate 
(MLE) of a Gaussian distribution

Mean

Variance

For vector-valued data,
we have the Covariance 
Matrix



Model fitting example 2:  
Fit a line to observed data

y

x



Maximum likelihood estimation for the 
slope of a single line

Data likelihood for point n:

Maximum likelihood estimate:

where

gives regression formula



Model fitting example 3:
Fitting two lines to observed data

y

x



MLE for fitting a line pair

(a form of mixture dist. for      )



Fitting two lines:  on the one hand…
If we knew 
which points 
went with which 
lines, we’d be 
back at the single 
line-fitting 
problem, twice.

x Line 1

Line 2

y



Fitting two lines, on the other hand…
We could figure out 
the probability that 
any point came 
from either line if 
we just knew the 
two equations for 
the two lines.

y

x



Expectation Maximization (EM):  a solution to 
chicken-and-egg problems



MLE with hidden/latent variables:
Expectation Maximisation

General problem:

data parameters hidden variables

For MLE, want to maximise the log likelihood

The sum over z inside 
the log gives a 
complicated expression 
for the ML solution.



The EM algorithm
We don’t know the values of the
labels, zi , but let’s use its expected value 
under its posterior with the current 
parameter values, θold.  That gives us the 
“expectation step”:

“E-step”

Now let’s maximize this Q function, 
an expected log-likelihood, over the 
parameter values, giving the 
“maximization step”:

“M-step”

Each iteration increases the total log-likelihood log p(y|θ)



Expectation Maximisation applied to fitting 
the two lines

associate data point with lineHidden variables

and maximising that gives

’ ’

:and probabilities of association are

Need:

and then:

/2



EM fitting to two lines

with /2
“E-step”

and

“M-step”

repeat

Regression becomes:



Experiments: EM fitting to two lines

Line weights

line 1

line 2

(from a tutorial by Yair Weiss, http://www.cs.huji.ac.il/~yweiss/tutorials.html)

Iteration 1 2 3



Applications of EM in computer vision

• Structure-from-motion with multiple 
moving objects

• Motion estimation combined with 
perceptual grouping

• Multiple layers/or sprites in an image.



Modeling outline 

(a) So we want to look at high-dimensional 
visual data, and fit models to it;  forming 
summaries of it that let us understand what 
we see.

(b) After that, we’ll look at ways to 
modularize the joint probability distribution.



Making probability distributions modular, and 
therefore tractable:

Probabilistic graphical models

Vision is a problem involving the interactions of many variables:  
things can seem hopelessly complex.  Everything is made 
tractable, or at least, simpler, if we modularize the problem.  
That’s what probabilistic graphical models do, and let’s examine 
that.

Readings:  Jordan and Weiss intro article—fantastic!
Kevin Murphy web page—comprehensive and with    

pointers to many advanced topics



A toy example

Suppose we have a system of 5 interacting variables, perhaps some are 
observed and some are not.  There’s some probabilistic relationship between 
the 5 variables, described by their joint probability,
P(x1, x2, x3, x4, x5).

If we want to find out what the likely state of variable x1 is (say, the 
position of the hand of some person we are observing), what can we do?

Two reasonable choices are:  (a) find the value of x1  (and of all the other 
variables) that gives the maximum of P(x1, x2, x3, x4, x5);  that’s the MAP 
solution.
Or (b) marginalize over all the other variables and then take the mean or the 
maximum of the other variables.  Marginalizing, then taking the mean, is 
equivalent to finding the MMSE solution.  Marginalizing, then taking the 
max, is called the max marginal solution and sometimes a useful thing to do.



To find the marginal probability at x1, we have to take this sum:
),,,,(

5432 ,,,
54321∑
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xxxxxP

If the system really is high dimensional, that will quickly become 
intractable.  But if there is some modularity in
then things become tractable again.

),,,,( 54321 xxxxxP

Suppose the variables form a Markov chain:  x1 causes x2 which causes x3, 
etc.   We might draw out this relationship as follows:

1x 2x 3x 4x 5x



P(a,b) = P(b|a) P(a)

By the chain rule, for any probability distribution, we have:

)|,,,()(),,,,( 15432154321 xxxxxPxPxxxxxP =
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But if we exploit the assumed modularity of the probability distribution over 
the 5 variables (in this case, the assumed Markov chain structure), then that 
expression simplifies:

1x 2x 3x 4x 5x

Now our marginalization summations distribute through those terms:
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Belief propagation
Performing the marginalization by doing the partial sums is called 
“belief propagation”.

∑ ∑ ∑ ∑ ∑∑ =
1 2 3 4 55432
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In this example, it has saved us a lot of computation.  Suppose each 
variable has 10 discrete states.  Then, not knowing the special structure 
of P, we would have to perform 10000 additions (10^4) to marginalize 
over the four variables.
But doing the partial sums on the right hand side, we only need 40 
additions (10*4) to perform the same marginalization!



1x 2x 3x 4x 5x

Another modular probabilistic structure, more common in vision 
problems, is an undirected graph:

The joint probability for this graph is given by:

),(),(),(),(),,,,( 5443322154321 xxxxxxxxxxxxxP ΦΦΦΦ=

Where                          is called a “compatibility function”.  We can 
define compatibility functions we result in the same joint probability as 
for the directed graph described in the previous slides;  for that example, 
we could use either form.

),( 21 xxΦ



Markov Random Fields

• Allows rich probabilistic models for 
images.

• But built in a local, modular way.  Learn 
local relationships, get global effects out.



MRF nodes as pixels

Winkler, 1995, p. 32



MRF nodes as patches

image patches

Φ(xi, yi)

Ψ(xi, xj)

image

scene

scene patches



Network joint probability

scene Scene-scene
compatibility

function
neighboring
scene nodes

image

local 
observations

Image-scene
compatibility

function
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In order to use MRFs:

• Given observations y, and the parameters of 
the MRF, how infer the hidden variables, x?

• How learn the parameters of the MRF?



Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated condtional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

• Vision applications of inference in MRF’s.
• Learning MRF parameters.

– Iterative proportional fitting (IPF)



Gibbs Sampling and Simulated 
Annealing

• Gibbs sampling: 
– A way to generate random samples from a (potentially 

very complicated) probability distribution.

• Simulated annealing:
– A schedule for modifying the probability distribution so 

that, at “zero temperature”, you draw samples only 
from the MAP solution.

Reference:  Geman and Geman, IEEE PAMI 1984.



Sampling from a 1-d function
1. Discretize the density 

function

2. Compute distribution function 
from density function

)(kf

)(kF

)(xf

)(kf

3. Sampling

draw α ~ U(0,1);
for k = 1 to n

if 
break;

;

α≥)(kF

τkxx += 0



Gibbs Sampling

x1

x2
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Gibbs sampling and simulated 
annealing

Simulated annealing as you gradually lower 
the “temperature” of the probability 
distribution ultimately giving zero 
probability to all but the MAP estimate.

What’s good about it:  finds global MAP 
solution.

What’s bad about it:  takes forever.  Gibbs 
sampling is in the inner loop…



Gibbs sampling and simulated 
annealing

So you can find the mean value (MMSE 
estimate) of a variable by doing Gibbs 
sampling and averaging over the values that 
come out of your sampler.

You can find the MAP value of a variable by 
doing Gibbs sampling and gradually 
lowering the temperature parameter to zero.



Iterated conditional modes

• For each node:
– Condition on all the neighbors
– Find the mode
– Repeat.

Described in:  Winkler, 1995.  Introduced by Besag in 1986.



Winkler, 1995



Variational methods

• Reference:  Tommi Jaakkola’s tutorial on 
variational methods, 

http://www.ai.mit.edu/people/tommi/
• Example:  mean field

– For each node
• Calculate the expected value of the node, 

conditioned on the mean values of the neighbors.  



Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated condtional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

• Vision applications of inference in MRF’s.
• Learning MRF parameters.

– Iterative proportional fitting (IPF)



Derivation of belief propagation
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The posterior factorizes
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Propagation rules
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Propagation rules
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Propagation rules
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Belief propagation:  the nosey 
neighbor rule

“Given everything that I know, here’s what I 
think you should think”

(Given the probabilities of my being in 
different states, and how my states relate to 
your states, here’s what I think the 
probabilities of your states should be)



Belief propagation messages
A message:  can be thought of as a set of weights on 
each of your possible states

To send a message:  Multiply together all the incoming 
messages, except from the node you’re sending to,
then multiply by the compatibility matrix and marginalize 
over the sender’s states. 
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Beliefs
To find a node’s beliefs:  Multiply together all the 
messages coming in to that node.
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Belief, and message updates
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Optimal solution in a chain or tree:
Belief Propagation

• “Do the right thing” Bayesian algorithm.
• For Gaussian random variables over time:  

Kalman filter.
• For hidden Markov models: 

forward/backward algorithm (and MAP 
variant is Viterbi).



No factorization with loops!
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Justification for running belief propagation 
in networks with loops

• Experimental results:
– Error-correcting codes

– Vision applications

• Theoretical results:
– For Gaussian processes, means are correct.

– Large neighborhood local maximum for MAP.

– Equivalent to Bethe approx. in statistical physics.

– Tree-weighted reparameterization

Weiss and Freeman, 2000

Yedidia, Freeman, and Weiss, 2000

Freeman and Pasztor, 1999;
Frey, 2000

Kschischang and Frey, 1998;
McEliece et al., 1998

Weiss and Freeman, 1999

Wainwright, Willsky, Jaakkola, 2001



Statistical mechanics interpretation

U - TS = Free energy

U = avg. energy = 
T = temperature
S = entropy = 
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Free energy formulation

Defining

then the probability distribution
that minimizes the F.E. is precisely 
the true probability of the Markov network, 
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Approximating the Free Energy

Exact:      
Mean Field Theory:    
Bethe Approximation : 
Kikuchi Approximations: 
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Bethe Approximation
On tree-like lattices, exact formula:
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Gibbs Free Energy
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Gibbs Free Energy

)}(),(){(                     

}1),({),(

)(

,)(

jj
x

jiijj
ij

ij
x

xx
jiij

ij
ijijiBethe

xbxxbx

xxbbbF

ij

ji

−+

−+

∑∑∑

∑∑

λ

γ

Set derivative of Gibbs Free Energy w.r.t. bij, bi terms to zero:
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Belief Propagation = Bethe

∑=
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enforce the constraints

Bethe stationary conditions = message update rules
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Region marginal probabilities
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Belief propagation equations
Belief propagation equations come from the 

marginalization constraints.
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Results from Bethe free energy analysis

• Fixed point of belief propagation equations iff. Bethe
approximation stationary point. 

• Belief propagation always has a fixed point.
• Connection with variational methods for inference:  both 

minimize approximations to Free Energy,
– variational:  usually use primal variables.
– belief propagation: fixed pt. equs. for dual variables. 

• Kikuchi approximations lead to more accurate belief 
propagation algorithms.

• Other Bethe free energy minimization algorithms—
Yuille, Welling, etc.



Kikuchi message-update rules
Groups of nodes send messages to other groups of nodes.

Typical choice for Kikuchi cluster.

i j i j
=i ji

=
lk

Update for
messages 

Update for
messages 



Generalized belief propagation
Marginal probabilities for nodes in one row 

of a 10x10 spin glass



References on BP and GBP
• J. Pearl, 1985

– classic
• Y. Weiss, NIPS 1998

– Inspires application of BP to vision
• W. Freeman et al learning low-level vision, IJCV 1999

– Applications in super-resolution, motion, shading/paint 
discrimination

• H. Shum et al, ECCV 2002
– Application to stereo

• M. Wainwright, T. Jaakkola, A. Willsky
– Reparameterization version

• J. Yedidia, AAAI 2000
– The clearest place to read about BP and GBP.



Graph cuts

• Algorithm:  uses node label swaps or expansions 
as moves in the algorithm to reduce the energy.  
Swaps many labels at once, not just one at a time, 
as with ICM.

• Find which pixel labels to swap using min cut/max 
flow algorithms from network theory.

• Can offer bounds on optimality.
• See Boykov, Veksler, Zabih, IEEE PAMI 23 (11) 

Nov. 2001 (available on web).



Comparison of graph cuts and belief 
propagation

Comparison of Graph Cuts with Belief 
Propagation for Stereo, using Identical
MRF Parameters, ICCV 2003.
Marshall F. Tappen William T. Freeman



Ground truth, graph cuts, and belief 
propagation disparity solution energies



Graph cuts versus belief propagation

• Graph cuts consistently gave slightly lower energy 
solutions for that stereo-problem MRF, although 
BP ran faster, although there is now a faster graph 
cuts implementation than what we used…

• However, here’s why I still use Belief 
Propagation:
– Works for any compatibility functions, not a restricted 

set like graph cuts.
– I find it very intuitive.
– Extensions:  sum-product algorithm computes MMSE, 

and Generalized Belief Propagation gives you very 
accurate solutions, at a cost of time.



MAP versus MMSE



Show program comparing some 
methods on a simple MRF

testMRF.m



Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated condtional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

• Vision applications of inference in MRF’s.
• Learning MRF parameters.

– Iterative proportional fitting (IPF)



Vision applications of MRF’s

• Stereo
• Motion estimation
• Labelling shading and reflectance
• Many others…



Vision applications of MRF’s

• Stereo
• Motion estimation
• Labelling shading and reflectance
• Many others…



Motion application
image patches

image

scene

scene patches



What behavior should we see in a 
motion algorithm?

• Aperture problem
• Resolution through propagation of 

information
• Figure/ground discrimination



The aperture problem



The aperture problem



Program demo



Motion analysis: related work

• Markov network
– Luettgen, Karl, Willsky and collaborators.

• Neural network or learning-based
– Nowlan & T. J. Senjowski; Sereno.

• Optical flow analysis
– Weiss & Adelson; Darrell & Pentland; Ju, 

Black & Jepson; Simoncelli; Grzywacz & 
Yuille; Hildreth; Horn & Schunk; etc. 



Motion estimation results
(maxima of scene probability distributions displayed)

Inference:

Image data

Initial guesses only 
show motion at edges.

Iterations 0 and 1



Motion estimation results
(maxima of scene probability distributions displayed)

Figure/ground still 
unresolved here.

Iterations 2 and 3



Motion estimation results
(maxima of scene probability distributions displayed)

Iterations 4 and 5

Final result compares well with vector 
quantized true (uniform) velocities.



Vision applications of MRF’s

• Stereo
• Motion estimation
• Labelling shading and reflectance
• Many others…



Forming an Image

Surface (Height Map)

Illuminate the surface to get:

Shading Image
The shading image is the interaction of the shape
of the surface and the illumination



Painting the Surface

Scene Image

Add a reflectance pattern to the surface. Points 
inside the squares should reflect less light



Goal

Image Shading Image Reflectance 
Image



Basic Steps
1. Compute the x and y image derivatives
2. Classify each derivative as being caused by 

either shading or a reflectance change
3. Set derivatives with the wrong label to zero. 
4. Recover the intrinsic images by finding the least-

squares solution of the derivatives.

Original x derivative image Classify each derivative
(White is reflectance)



Learning the Classifiers
• Combine multiple classifiers into a strong classifier using 

AdaBoost (Freund and Schapire)
• Choose weak classifiers greedily similar to (Tieu and Viola 

2000)
• Train on synthetic images
• Assume the light direction is from the right

Shading Training Set Reflectance Change Training Set



Using Both Color and 
Gray-Scale Information

Results without
considering gray-scale



Some Areas of the Image Are 
Locally Ambiguous

Input

Shading Reflectance

Is the change here better explained as

?or



Propagating Information
• Can disambiguate areas by propagating 

information from reliable areas of the image 
into ambiguous areas of the image



Propagating Information
• Consider relationship between 
neighboring derivatives

• Use Generalized Belief 
Propagation to infer labels



Setting Compatibilities

• Set compatibilities 
according to image 
contours
– All derivatives along a 

contour should have 
the same label

• Derivatives along an 
image contour 
strongly influence 
each other 0.5 1.0

⎥
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Improvements Using Propagation

Input Image Reflectance Image
Without Propagation

Reflectance Image
With Propagation





(More Results)

Reflectance ImageInput Image Shading Image







Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Variational methods
– Belief propagation
– Graph cuts

• Vision applications of inference in MRF’s.
• Learning MRF parameters.

– Iterative proportional fitting (IPF)



Learning MRF parameters, labeled data

Iterative proportional fitting lets you 
make a maximum likelihood 
estimate a joint distribution from 
observations of various marginal 
distributions.



True joint 
probability

Observed 
marginal 
distributions



Initial guess at joint probability



IPF update equation

Scale the previous iteration’s estimate for the joint 
probability by the ratio of the true to the predicted 
marginals.

Gives gradient ascent in the likelihood of the joint 
probability, given the observations of the marginals.

See:  Michael Jordan’s book on graphical models



Convergence of to correct marginals by IPF algorithm



Convergence of to correct marginals by IPF algorithm



IPF results for this example: 
comparison of joint probabilities

True joint 
probability

Initial guess Final maximum
entropy estimate



Application to MRF parameter estimation

• Can show that for the ML estimate of the clique 
potentials, φc(xc), the empirical marginals equal 
the model marginals,

• This leads to the IPF update rule for φc(xc)

• Performs coordinate ascent in the likelihood of the 
MRF parameters, given the observed data.

Reference:  unpublished notes by Michael Jordan



More general graphical models than 
MRF grids

• In this course, we’ve studied Markov chains, and 
Markov random fields, but, of course, many other 
structures of probabilistic models are possible and 
useful in computer vision.

• For a nice on-line tutorial about Bayes nets, see 
Kevin Murphy’s tutorial in his web page.



“Top-down” information:  a 
representation for image context

Images

80-dimensional 
representation

Credit: Antonio Torralba



“Bottom-up” information:  labeled 
training data for object recognition.

•Hand-annotated 1200 frames of video from a wearable webcam 
•Trained detectors for 9 types of objects: bookshelf, desk,
screen (frontal) , steps, building facade, etc.
•100-200 positive patches, > 10,000 negative patches



Combining top-down with bottom-up: 
graphical model showing assumed 

statistical relationships between variables

Scene category

Visual “gist”
observations

Object class

Particular objects

Local image features

kitchen, office, lab, conference 
room, open area, corridor, 
elevator and street.



Categorization of new places
ICCV 2003 poster
By Torralba, Murphy, 
Freeman, and Rubin

Specific location

Location category

Indoor/outdoor
frame



Bottom-up detection: ROC curves
ICCV 2003 poster
By Torralba, Murphy, 
Freeman, and Rubin
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