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What is the goal of vision?

If you are asking,

“Are there any faces in this
Image?”,

then you would probably
want to use discriminative

methods.




What is the goal of vision?

If you are asking,

“Are there any faces in this
Image?”,

then you would probably
want to use discriminative

methods.

If you are asking,
“Find a 3-d model that

describes the runner”,
then you would use
generative methods.




Modeling outline

(a) So we want to look at high-dimensional
visual data, and fit models to it; forming
summaries of It that let us understand what
we see.

(b) After that, we’ll look at ways to
modularize the joint probability distribution.



The simplest data to model:
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Fit this distribution with a Gaussian
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How find the parameters of the best-
fitting Gaussian?

Posterior probability Likelihood function  Prior probability

! ! !

P(u,olz) = P(Zm]’g();;(u’a)

|

Evidence

By Bayes rule



How find the parameters of the best-
fitting Gaussian?

Posterior probability Likelihood function  Prior probability

! ! !

Evidence

Maximum likelihood parameter estimation:

i, 0 = argmax, , P(z|u, o)



Observation density

Log likelihood

Maximisation

Derivation of MLE for Gaussians
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Basic Maximum Likelihood Estimate
(MLE) of a Gaussian distribution
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Basic Maximum Likelihood Estimate
(MLE) of a Gaussian distribution

1 X
Mean g=m= N E Zn
n=1
1 N
] "o — - = _ 3
Variance S= Nﬂél(zﬂ 1)

For vector-valued data,
we have the Covariance

| N
Matrix P=5= N Z:(zﬂ — ) (zn — )T



Model fitting example 2:
Fit a line to observed data




Maximum likelihood estimation for the
slope of a single line

model: Y = aX 4+ w
where w ~ N(u=0,0 = 1).
Data likelihood for point n:

P(Xn, Ynla) = cexp[—(Yn — aXn)?/2]

Maximum likelihood estimate:
G = argmaxp(Y1,..., Yala) = a;rgm[?xz —d(Yn; a)?/2

where  d(Yn;a) = |Yn — a Xy

Zn YﬂXﬂ
> o X2

gives regression formula @ =



Model fitting example 3:
Fitting two lines to observed data




MLE for fitting a line pair

LinesY = a1 X +wor Y = a2 X + w, with w ~ N(0,1).

(a form of mixture dist. for Y")




Fitting two lines: on the one

X e Linel

e Line?2

hand...

If we knew
which points
went with which
lines, we’d be
back at the single
line-fitting
problem, twice.



Fitting two lines, on the other hand...

We could figure out
the probability that
any point came
from either line if
we just knew the
two equations for
the two lines.




Expectation Maximization (EM): a solution to




MLE with hidden/latent variables:
Expectation Maximisation

General problem:
y=(Y1,...,YN), 0= (a1,a2); z=(21,...,2N)

data parameters hidden variables

For MLE, want to maximise the log likelihood

§ = arg maxg log p(y|6)

The sum over z inside

the log gives a — arg maxy log Zzp(y, 2‘9)

complicated expression
for the ML solution.



The EM algorithm

We don’t know the values of the
labels, z;, but let’s use its expected value
under its posterior with the current

parameter values, 6,4 That gives us the
“expectation step”:

“E-step” Q(Q; Qold) — Zz p(z|y, Qold) log p(y |Z 9)

Now let’s maximize this Q function,
an expected log-likelihood, over the
parameter values, giving the
“maximization step”:

“M-step” Onew = arg Maxg Q(Q; Qold)

Each iteration increases the total log-likelihood log p(y|6)



Expectation Maximisation applied to fitting
the two lines

Hidden variables z» = ¢ associate data point n with line 2

and probabilities of association are w;(n), ¢t =1,2,:

Need:
wi(n) = p(zn =iy, 0) x p(y|zn = 14,0) o exp[—d(Yn; az‘)2/2]

and then:

QY. 6. 651)=3" ~5 (w01 (M)d(¥r; 01)? + wa(n)(Vr; 02)°)

and maximising that gives

o Zn wi(ﬂ)Yan
’ En wi(ﬂ)X% -




EM fitting to two lines

with w;(n) « exp —d(Yy;a)%/2
(41 E—Step,,
and wi(n) +we(n) =1 T
repeat

Regression becomes:

. Eﬂ ’lﬂi(ﬂ)Yan T 73
YT Swmxg - TM-step




Experiments: EM fitting to two lines

(from a tutorial by Yair Weiss, http://www.cs.huji.ac.il/~yweiss/tutorials.html)
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Applications of EM In computer vision

o Structure-from-motion with multiple
moving objects

e Motion estimation combined with
perceptual grouping

e Multiple layers/or sprites in an image.



Modeling outline

(a) So we want to look at high-dimensional
visual data, and fit models to it; forming
summaries of It that let us understand what
We See.

(b) After that, we’ll look at ways to
modularize the joint probability distribution.



Making probability distributions modular, and
therefore tractable:

Probabilistic graphical models

Vision is a problem involving the interactions of many variables:
things can seem hopelessly complex. Everything is made
tractable, or at least, simpler, if we modularize the problem.
That’s what probabilistic graphical models do, and let’s examine
that.

Readings: Jordan and Weiss intro article—fantastic!
Kevin Murphy web page—comprehensive and with
pointers to many advanced topics



A toy example

Suppose we have a system of 5 interacting variables, perhaps some are
observed and some are not. There’s some probabilistic relationship between
the 5 variables, described by their joint probability,

P(x1, X2, X3, x4, x5).

If we want to find out what the likely state of variable x1 is (say, the
position of the hand of some person we are observing), what can we do?

Two reasonable choices are: (a) find the value of x1 (and of all the other
variables) that gives the maximum of P(x1, x2, x3, x4, x5); that’s the MAP
solution.

Or (b) marginalize over all the other variables and then take the mean or the
maximum of the other variables. Marginalizing, then taking the mean, is
equivalent to finding the MMSE solution. Marginalizing, then taking the
max, is called the max marginal solution and sometimes a useful thing to do.



To find the marginal probability at x1, we have to take this sum:
ZP(x11x2’x31x4’x5)

X9 ,X3,X4,X5

If the system really is high dimensional, that will quickly become
intractable. But if there is some modularity in  P(x,, x,, X5, X, , X;)
then things become tractable again.

Suppose the variables form a Markov chain: x1 causes X2 which causes x3,
etc. We might draw out this relationship as follows:



P(a,b) = P(bja) P(a)
By the chain rule, for any probability distribution, we have:

P(x;,x,,x53,%,,%5) = P(x,) P(x,, X5, %,, %5 | X;)
= P(x,)P(x, | x,)P(x;, X4, X | X, X,)
= P(x,)P(x, | x)P(xs | X, X,) P(xy, X | X, %y, %5)
= P(x)P(x, | x))P(x5 | xp,x,) P(x, | %, %5, %3) P(xs | Xy, Xy, X5, X,)
But if we exploit the assumed modularity of the probability distribution over

the 5 variables (in this case, the assumed Markov chain structure), then that
expression simplifies:

Now our marginalization summations distribute through those terms:

ZP(xl,xz,x3,x4,x5): P(xl)zp(xZ |x1)ZP(x3 |x2)ZP(x4 |x3)ZP(x5 | x,)

X9,X3,X4,X5

= P(x)) P(x, | x)) P(x5 | x,) P(x, | x3) P(xs5 | x,)



Belief propagation

Performing the marginalization by doing the partial sums is called
“belief propagation”.

ZP(xlixz’xs’xm)%) = P(xl)ZP(xz |x1)ZP(x3 |x2)ZP(x4 |x3)ZP(x5 | x,)

X9,X3,X4,X5

In this example, it has saved us a lot of computation. Suppose each
variable has 10 discrete states. Then, not knowing the special structure
of P, we would have to perform 10000 additions (10”4) to marginalize
over the four variables.

But doing the partial sums on the right hand side, we only need 40
additions (10*4) to perform the same marginalization!



Another modular probabilistic structure, more common in vision
problems, is an undirected graph:

The joint probability for this graph is given by:
P(Xy, %5, X3, %4, X5) = @y, X, )P (X, x3) D (x5, x, )P, X5)

Where CD(xl, xz) is called a “compatibility function”. We can
define compatibility functions we result in the same joint probability as
for the directed graph described in the previous slides; for that example,
we could use either form.



Markov Random Fields

» Allows rich probabilistic models for
Images.

« But built in a local, modular way. Learn
local relationships, get global effects out.




MRF nodes as pixels

Fig. 2.3. Smoothing
with the wrong prior. (a)
Original, (b) degraded
image, (c) MAP esti-
mate 3 = 1, (d) MAP
estimate 3 = 0.3, (e)
median filter

d
Winkler, 1995, p. 32



MRF nodes as patches

Image patches




Network joint probability

P(x, y) =—; HT(X,- X, ) Hq?(xl- Vi)

scene Scene-scene Image-scene
image compatibility compatibility
function function
neighboring local

scene nodes observations



In order to use MRFs:

e Given observations y, and the parameters of
the MRF, how Infer the hidden variables, x?

 How learn the parameters of the MRF?



Outline of MRF section

 Inference In MRF’s.
— Gibbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Vision applications of inference in MRF’s.

e Learning MRF parameters.
— Iterative proportional fitting (IPF)



Gibbs Sampling and Simulated
Annealing

e Gibbs sampling:
— A way to generate random samples from a (potentially
very complicated) probability distribution.

e Simulated annealing:

— A schedule for modifying the probability distribution so
that, at “zero temperature”, you draw samples only
from the MAP solution.

P(z) = & exp(—E(z)/kT)

Reference: Geman and Geman, IEEE PAMI 1984.



Sampling from a 1-d function

1. Discretize the density

function 3. Sampling
£(x) (k) draw o ~ U(O,l),
fork=1ton
If F(k)>a
—
break;
f (k) F(k) X =X, +
2. Compute distribution function

from density function



Gibbs Sampling

X~ (o | X, 60,  x0)
x§t+1) - 7l'(x2 |x£t+1)’x§t)’.”’xg))
L]
L]
L]
xg = w e g™ xY)

Slide by Ce Liu



Gibbs sampling and simulated
annealing

Simulated annealing as you gradually lower
the “temperature” of the probability
distribution ultimately giving zero
probability to all but the MAP estimate.

What’s good about it: finds global MAP
solution.

What’s bad about it;: takes forever. Gibbs
sampling is in the inner loop...




Gibbs sampling and simulated
annealing

So you can find the mean value (MMSE
estimate) of a variable by doing Gibbs
sampling and averaging over the values that
come out of your sampler.

You can find the MAP value of a variable by
doing Gibbs sampling and gradually
lowering the temperature parameter to zero.



lterated conditional modes

e For each node:
— Condition on all the neighbors
— Find the mode
— Repeat.

Described in: Winkler, 1995. Introduced by Besag in 1986.
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Variational methods

e Reference: Tommi Jaakkola’s tutorial on
variational methods,
http://www.al.mit.edu/people/tommi/

o Example: mean field

— For each node

 Calculate the expected value of the node,
conditioned on the mean values of the neighbors.



Outline of MRF section

 Inference In MRF’s.
— Glbbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Vision applications of inference in MRF’s.

o Learning MRF parameters.
— lterative proportional fitting (IPF)



Derivation of belief propagation

Xumse = Mean SUum suim P(x1’x2’x31Y11J’21J’3)

X1 X2 X3



The posterior factorizes

Ximse = MEaAN sum suim P(xwxz’xs’)/l’J/z’)/s)

Xy X2 S
= mean sum sum @ (x,, y,)
X1 X9 X3

D(x,,y,) ¥(x,x,)
D (x5, y3) ¥(x,,x;)

D(x;, ;) D(x,,,) D (x5, ¥5)
@ ¥(x,x,) @ lP(xzvxs)®



Propagation rules

Ximese = MEaAN sum suim P(xpxz’xs’)/l’J/z’)/e,)

X1 X2 X3

X = MEan sumsum & (x,, y,)

D(x,,y,) ¥(x,x,)
D (x5, v3) P(xy,x;)

»® ©® ®

Sl;JCm q)(xz y y2) LIJ(-)C]_! x2) D(x,, ,) D(x,,y,) (x5, y5)
2

sum @ (x,, v,;) Y(x,,x,) ®w<xﬂxz>®xp<xz,xz>®

Xmse = mean @ (x;, y;)
X1



Propagation rules
Xuvse = Mean @(x;, y;)
Slizm D(x,, y,) V(x;, x,)

SL}'Cm D (x5, y5) W(x,,x;)

M (xl)_sum Y(x,x,) @(x,,0,) M, , (%)

0 0 @

D (x,

@W @w )®



Propagation rules
Xuvse = Mean @(x;, y;)
Slizm D(x,, y,) V(x;, x,)

SL}'Cm D (x5, y5) W(x,,x;)

M (xl)_sum Y(x,x,) @(x,,0,) M, , (%)

0 0 @

D (x,

@W @w )®



Belief propagation: the nosey
neighbor rule

“Given everything that | know, here’s what |
think you should think”

(Given the probabilities of my being In
different states, and how my states relate to
your states, here’s what | think the
probabilities of your states should be)



Belief propagation messages

A message: can be thought of as a set of weights on
each of your possible states

To send a message: Multiply together all the incoming
messages, except from the node you’re sending to,

then multiply by the compatibility matrix and marginalize
over the sender’s states.

M/ (x,)= Zw.,(x,,x) [[M5(x))

keN (j)\i




Beliefs

To find a node’s beliefs: Multiply together all the
messages coming In to that node.

J

b;(x;)= HM;((XJ)

keN(j)



Belief, and message updates

b;(x;)= HM;((XJ)

keN(j)

J

M/ (x)= Zw.,(x x) [[M(x))

keN(j)\i



Optimal solution In a chain or tree;:
Belief Propagation

* “Do the right thing” Bayesian algorithm.

e For Gaussian random variables over time:
Kalman filter.
 For hidden Markov models:

forward/backward algorithm (and MAP
variant Is Viterbi).



No factorization with loops!

X MMSE = mgan D(x;, 1)

1

Slim D(x,, y,) V(x;, x,)

Sl.)]cm (D(xg,yg) \P('XZ"XS) \P(xl,xS)



Justification for running belief propagation

In networks with loops
o Experimental results:

— Error-correcting codes Kschischang and Frey, 1998;
McEliece et al., 1998

Freeman and Pasztor, 1999:

— Vision applications Frey, 2000

e Theoretical results:

~ For Gaussian processes, [means ar eorrect, . ;oo

— Large neighborhood local maximum for MAP.

_ Weiss and Freeman, 2000
— Equivalent to Bethe approx. in statistical physics.

— Tree-weighted reparamet\(gﬁ%'a%%hlzreeman’ and Weiss, 2000

Wainwright, Willsky, Jaakkola, 2001



Statistical mechanics interpretation

U - TS = Free energy

U=avg.energy = » p(x,,x,,..)E(x,,x,,...)
T = temperature "
S=entropy =  — 2. P00 In pla, x;,.)

States



Free energy formulation

Defining
= E(x;x)IT _ —E(x)IT
Ty(xi’xj)_e D (x)=e
then the probability distribution P(x,,x,,...)
that minimizes the F.E. Is precisely

the true probability of the Markov network,

P(x,,x,,..)= H‘PU (xl.,xj)HCDi(xi)




Approximating the Free Energy

Exact: Flp(x;, x5, xy)]
Mean Field Theory: Fb,(x;)]
Bethe Approximation F15,(x;),6;(x;, x )]
Kikuchi Approximations:
F10,(x;),0;(x;, x;), b, (x, X, %, ),....]

] L,



Bethe Approximation

On tree-like lattices, exact formula:
Py, Xy Xy ) = Hpij (xi’xj)H[pi ()]

(i) i

Frabiby) =D > b, (6, ) (B, (x,,x,) + T Inb, (x,, x,)

() x;.x;

" Z(l_qZ')Zbi (xi)(Ei (xi) +T Inbi (xi))



Gibbs Free Energy
Fyene (b;1b; )+Zy,{Zb (x;,x;) -1}

(i)

+Z Z/I (x; ){Zb (x;,x;)—b,(x,)}

X (4)



Gibbs Free Energy
Bethe(bz’bz])_l_Z?/z] Zb (xz"x) 1}

(i) X; X

+Z Z/Iy(x ){Zb (x;,x;)—b,(x,)}

X (4)

Set derivative of Gibbs Free Energy w.r.t. by, b; terms to zero:

_ﬂ’ij('xi)
bl.j(x x) kY. (xl,x ) exp( - )
> /1 (x;)

jeN(i)
b.(x;) =ko(x;)exp( - )




Belief Propagation = Bethe

Lagrange multipliers A;(x;)

enforce the constraints 5 (x)=> b, (x,,x;)

Bethe stationary conditions = message update rules

wih 2, (x)=TIn TTM*(x)

keN(j)\i



Region marginal probabilities

bi(xi) :kq)('xi) HMik('xi)

keN (i)

by (x,,x;) =k W (x;, x)) HMik (x;) HMJk (x;)

keN (i)\j keN (j)\i



Belief propagation equations

Belief propagation equations come from the
marginalization constraints.

. e

Mij(xi) :ZWij(xi’xj) HM]k(xJ)

keN (j)\i



Results from Bethe free energy analysis

Fixed point of belief propagation equations iff. Bethe
approximation stationary point.

Belief propagation always has a fixed point.

Connection with variational methods for inference: both
minimize approximations to Free Energy,

— variational: usually use primal variables.

— belief propagation: fixed pt. equs. for dual variables.

Kikuchi approximations lead to more accurate belief
propagation algorithms.

Other Bethe free energy minimization algorithms—
Yuille, Welling, etc.



Kikuchi message-update rules

Groups of nodes send messages to other groups of nodes.

D Typical choice for Kikuchi cluster.

i_l_j . o—
=] LERL A
1

Update for Update for
messages messages —I—



Generalized belief propagation

Marginal probabilities for nodes in one row
of a 10x10 spin glass
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References on BP and GBP

J. Pearl, 1985

— classic

Y. Weiss, NIPS 1998
— Inspires application of BP to vision

W. Freeman et al learning low-level vision, 1JCV 1999

— Applications in super-resolution, motion, shading/paint
discrimination

H. Shum et al, ECCV 2002
— Application to stereo

M. Wainwright, T. Jaakkola, A. Willsky
— Reparameterization version

J. Yedidia, AAAI 2000
— The clearest place to read about BP and GBP.



Graph cuts

Algorithm: uses node label swaps or expansions
as moves In the algorithm to reduce the energy.
Swaps many labels at once, not just one at a time,
as with ICM.

Find which pixel labels to swap using min cut/max
flow algorithms from network theory.

Can offer bounds on optimality.

See Boykov, Veksler, Zabih, IEEE PAMI 23 (11)
Nov. 2001 (available on web).



Comparison of graph cuts and belief
propagation

Comparison of Graph Cuts with Belief
Propagation for Stereo, using Identical
MRF Parameters, ICCV 2003.

Marshall F. Tappen William T. Freeman

{a) Tsukuba Image by Graph Cuts {¢) Synchronous BP (dy Accelerated BP

Figure 3. Results produced by the three algorithms on the Tsukuba image. The parameters used to
generate this field were = = 501, T' = 4, P = 2. Again, Graph Cuts produces a much smoother solution.
Belief Propagation does maintain some structures that are lost in the Graph Cuts solution, such as
the camera and the face in the foreground.



Ground truth, graph cuts, and belief
propagation disparity solution energies

Energy of MRF Labelling Returned (< 10%)
Svnchronous | % Energy from Occluded
[mage Ground-Truth | Graph Cuts | Behet Prop Matching Costs
Map 757 383 442 6 1%
Sawtooth 6391 632 | 713 T9%
Tsukuba |852 663 773 6 1%
Venus 37349 | 442 1501 T

Figure 2. Field Energies for the MRF labelled using ground-truth data compared to the energies for
the fields labelled using Graph Cuts and Belief Propagation. Notice that the solutions returned by
the algorithms consistently have a much lower energy than the labellings produced from the ground-
truth, showing a mismatch between the MRF formulation and the ground-truth. The final column
contains the percentage of each ground-truth solution’s energy that comes from matching costs of

occluded pixels.



Graph cuts versus belief propagation

» Graph cuts consistently gave slightly lower energy
solutions for that stereo-problem MRF, although
BP ran faster, although there Is now a faster graph
cuts implementation than what we used...

 However, here’s why | still use Belief
Propagation:
— Works for any compatibility functions, not a restricted
set like graph cuts.
— | find it very intuitive.
— Extensions: sum-product algorithm computes MMSE,

and Generalized Belief Propagation gives you very
accurate solutions, at a cost of time.



MAP versus MMSE

(a) MAP Estimate () MMSE Estimate

Figure 7. Comparison of MAP and MMSE estimates on a different MRF formulation. The MAP estimate
chooses the most likely discrete disparity level for each point, resulting in a depth-map with stair-
stepping effects. Using the MMSE estimate assigns sub-pixel disparities, resulting in a smooth depth
map.



Show program comparing some
methods on a simple MRF

testMRF.m



Outline of MRF section

 Inference iIn MRF’s.
— Glbbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Vision applications of inference in MRF’s.

e Learning MRF parameters.
— lterative proportional fitting (IPF)



Vision applications of MRF’s

Stereo

Motion estimation

Labelling shading and reflectance
Many others...



Vision applications of MRF’s

Stereo

Motion estimation

Labelling shading and reflectance
Many others...



Motion application

Image patches




What behavior should we see In a
motion algorithm?

o Aperture problem

« Resolution through propagation of
Information

* Figure/ground discrimination



The aperture problem




The aperture problem




Program demo



Motion analysis: related work

e Markov network

— Luettgen, Karl, Willsky and collaborators.
* Neural network or learning-based

— Nowlan & T. J. Senjowski; Sereno.
o Optical flow analysis

— Weiss & Adelson: Darrell & Pentland:; Ju,
Black & Jepson; Simoncelli; Grzywacz &
Yuille; Hildreth: Horn & Schunk; etc.



Inference: I\/Iotlon estimation results

(maxima of scene probability distributions displayed)

Image data
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Iterations 0 and 1

Initial guesses only
show motion at edges.



A A

I\/Iotlon estimation results

(maxima of scene probability distributions displayed)
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Iterations 2 and 3

Figure/ground still
unresolved here.
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I\/Iotlon estimation results
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Iterations 4 and 5

Final result compares well with vector
quantized true (uniform) velocities.



Vision applications of MRF’s

Stereo

Motion estimation

Labelling shading and reflectance
Many others...



Forming an Image

@ [lluminate the surface to get:

Surface (Height Map) Shading Image

The shading image Is the interaction of the shape
of the surface and the illumination



@ Painting the Surface

Scene Image

Add a reflectance pattern to the surface. Points
Inside the squares should reflect less light



Goal

Image Shading Image Reflectance
Image



Basic Steps

1. Compute the x and y image derivatives

2. Classify each derivative as being caused by
either shading or a reflectance change

3. Set derivatives with the wrong label to zero.

4. Recover the intrinsic images by finding the least-
squares solution of the derivatives.

Classify each derivative

Original x derivative image (White is reflectance)



¢ )
-~ 74 CLearning the Classifiers

e Combine multiple classifiers into a strong classifier using
AdaBoost (Freund and Schapire)

Choose weak classifiers greedily similar to (Tieu and Viola
2000)

 Train on synthetic images
e Assume the light direction is from the right

Shading Training Set Reflectance Change Training Set

e




Using Both Color and
Gray-Scale Information

Results without
considering gray-scale




Some Areas of the Image Are
Locally Ambiguous

Is the change here better explained as

Shading

or
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Propagating Information

e Can disambiguate areas by propagating
Information from reliable areas of the image
Into ambiguous areas of the Image




Propagating Information

» Consider relationship between
neighboring derivatives

Pat = et

e Use Generalized Belief
Propagation to infer labels



o Set compatibilities
according to image
contours

— All derivatives along a
contour should have
the same label

o Derivatives along an
Image contour
strongly influence
each other




Improvements Using Propagation
O A

Input Image Reflectance Image Reflectance Image
Without Propagation With Propagation




Combmmeg: local evidence from shape
and color, and GBP for propagahon

Lah OMnpinal lisage {¢) Refkectance lnsags



(More Results)

Input Image Shading Image  Reflectance Image



(a) Original Image



(a) Original Image (b) Shape Image (c) Reflectance Image




Outline of MRF section

* Inference iIn MRF’s.
— Glbbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Vision applications of inference in MRF’s.

e Learning MRF parameters.
— Iterative proportional fitting (IPF)



Learning MRF parameters, labeled data

Iterative proportional fitting lets you
make a maximum likelihood
estimate a joint distribution from
observations of various marginal
distributions.



true joint probability

520

L'd
L0
120
520
E0

True joint
probability el
0.35
0.3
Observed
0251 .
a5l marginal
L distributions

0.1 L L 1 1 ! 1 ]
1



Initial guess at joint probability

Initial guess at joint probability




|PF update equation

P (. )Observed
P(xq1,2o,... ,.ccd)(t+1) = P(z1,22,... ,.ccd)(t) (xfa)(mi)(t)

Scale the previous iteration’s estimate for the joint
probability by the ratio of the true to the predicted
marginals.

Gives gradient ascent in the likelihood of the joint
probability, given the observations of the marginals.

See: Michael Jordan’s book on graphical models



Convergence of to correct marginals by IPF algorithm

margl (b) versus estimates (1] and final difference (y)
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Convergence of to correct marginals by IPF algorithm

margs (b) versus estimates (1) and final difference (y)
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IPF results for this example:
comparison of joint probabilities

True joint
probability

#1: Rar‘lge [EI 00B62, 0.074%]
true joint (top) and TqF'Ebs imate (bottom)

Final maximum
entropy estimate

Initial guess

#2: Hange [0.0165, 0.0728]
Clims [&, 9]



Application to MRF parameter estimation

e Can show that for the ML estimate of the clique
potentials, ¢.(X.), the empirical marginals equal
the model marginals,

p(ze) = p(ze)
 This leads to the IPF update rule for ¢.(x.)
(t‘l‘l) — ( ) ﬁ(mc)
( C) ¢C (ch) (t) (35'0)
e Performs coordinate ascent in the likelihood of the
MRF parameters, given the observed data.

Reference: unpublished notes by Michael Jordan



More general graphical models than
MRF grids

* |In this course, we’ve studied Markov chains, and
Markov random fields, but, of course, many other
structures of probabilistic models are possible and
useful in computer vision.

* For a nice on-line tutorial about Bayes nets, see
Kevin Murphy’s tutorial in his web page.




“Top-down” Information: a
representation for image context

Images

80-dimensional
representation

Credit; Antonio Torralba



“Bottom-up” information: labeled
training data for ob| ect reconltlon

Polygon-Class-List
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*Trained detectors for 9 types of objects: bookshelf, desk,
screen (frontal) , steps, building facade, etc.
*100-200 positive patches, > 10,000 negative patches



Combining top-down with bottom-up:
graphical model showing assumed
statistical relationships between variables

?

kitchen ff e, lab, conference

room, p rea, corrldor,
elevator dt et.

oo .@..




Thercesa office
200 sidc strcct
Drapcr strecct
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Categorization of new places

Famihar

New environment environment

e

ICCV 2003 poster
By Torralba, Murphy,
Freeman, and Rubin



Bottom-up detection: ROC curves

100 ICCV 2003 poster
90 fesk By Torralba, Murphy,
U CS L L : Freeman, and Rubin
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