Today

* Interpretation tree
e Edges
e Bayes

Bill Freeman, MIT 6.869, March 10, 2005



Assignments

Take-home exam:

Given out Tuesday, March 15, due midnight,
March 17.

Cannot collaborate on it.
Open book.

Problem set 2
— Can have until Monday 5pm to complete it.



6.869 projects

* Proposals to us by March 31 or earlier.
e We will ok them by April 5
» 3 possible project types:
— Original implementation of an existing algorithm

— Rigorous evaluation of existing implementation.

— Synthesis or comparison of several research
papers.



6.869 projects, continued

e Some possible projects

— Evaluate the performance of local image feature
descriptors.

— Pose and solve a vision problem: make an algorithm

that detects broken glass, or that finds trash. Implement
and evaluate it.

— Implement and evaluate the photographic/computer
graphics discriminator.

— Compare several motion estimation algorithms. Discuss
how they’re different, the benefits of each, etc. Put
them in a common framework.



Interpretation Trees

» Tree of possible model-image feature assignments
* Depth-first search

e Prune when unary (binary, ...) constraint violated
— length
— dléa
— orientation




Interpretation tree

The problem is to match the line primitives in the model, {1, 2, 3} to those
In the scene, {a, b, c}. Select a scene feature at random, feature a, say.
Choose a model feature at random. The choice (a, 1) represents a node
In the tree. However, we could equally choose (a, 2) or (a, 3) as initial
nodes. Thus there are three nodes at the first level of the tree.

Now expand each of these nodes. For example, if we choose to expand (a,
1) then the three children would be defined as (b, 1), (b, 2) and (b, 3).
If we expand (a, 2) then the children are the same. Hence, for a
completely unconstrained tree search matching a model of n
primitives to a scene having n primitives there will n nodes at the first
level, n”2 at the second level and so on until there are n”*n nodes at

the last level.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/high/matching/tree.htfn



Interpretation tree

In general, we shall deal with constrained tree search. For example, is a scene
labelling of
{(a, 3), (b, 3), (c,3)} sensible ? Well it suggests that we can detect in the scene
the hypoteneuses of three separate triangle, and that the other sides are
occluded or otherwise undetected. Suppose we know a-priori that there is only
one triangle in the scene ? Then, at the second level of the search tree we can
only expand (a, 1) with (b, 2) and (b, 3); this a uniqueness constraint by
analogy with the stereo matching problem. Hence for each of n nodes at the
first level, there are n-1 children, then n-2 children and so on.

To reduce the combinatorics of the search still further, we should add additional
constraints...Unary constraints apply to single pairings between model and
scene features. For example we could introduce a constraint which says that
lines can only be matched if they have the same length. Binary or pairwise
constraints are based on pairs if features.

http://homepages.inf.ed.ac.uk/rbf/CVonIine/LOCAL_COPIES/MARBLE/high/matching/tree.ht?n



Interpretation Trees
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“Wild cards” handle spurious image features
[ A.M. Wallace. 1988. ]

http://faculty.washington.edu/cfolson/papers/pdf/icprO4.pdf



Gradients and edges (Forsyth, ch. 8)

o Points of sharp change ¢ General strategy

In an image are — determine image
interesting: gradient

— change in reflectance

— change in object — now mark points where

gradient magnitude is

— change In illumination :
particularly large wrt

- NOIE neighbours (ideally,
e Sometimes called curves of such points).
edge points

Forsyth, 2002



There are three major issues:
1) The gradient magnitude at different scales is different; which should
we choose?
2) The gradient magnitude is large along thick trail; how
do we identify the significant points?
3) How do we link the relevant points up into curves?

10
Forsyth, 2002



Smoothing and Differentiation

e [ssue: noise
— smooth before differentiation
— two convolutions to smooth, then differentiate?

— actually, no - we can use a derivative of
Gaussian filter

e because differentiation is convolution, and
convolution Is associative

11

Forsyth, 20



1 pixel 3 pixels 7 pixels

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

12
Forsyth, 2002



We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve. There are

then two algorithmic issues: at which point is the maximum, and where is the
next one?

13
Forsyth, 2002



Forsyth, 2002
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Forsyth, 2002

(radient

Predicting
the next
edge point

Assume the
marked point is an
edge point. Then
we construct the
tangent to the edge
curve (which is
normal to the
gradient at that
point) and use this
to predict the next
points (here either
rors).




Remaining Issues

* Check that maximum value of gradient
value Is sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.
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Notice

e Something nasty IS happening at corners
» Scale affects contrast
* Edges aren’t bounding contours

17
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Forsyth, 2002



' coarse
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~~——— high
threshold

20

Forsyth, 2002
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21

Forsyth, 2002



edges

e |ssues:

— On the one hand, what a useful thing: a marker
for where something interesting is happening in
the Image.

— On the other hand, isn’t it way to early to be
thresholding, based on local, low-level pixel
Information alone?

22



Something
useful with
edges

Dan Huttenlocher

http://www.cs.cornell
.edu/~dph/hausdorff/
hausdorffl.htmi

't
= r——j iz a two-dimensional bitmap that serves as a model view of an object (Kevin
gitting on a couch)
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I/ is a two-dimensional bitmap (intensity
edges) in which we want to locate this model, under the transformation of two-dimensional
translation and scaling (that is the model iz allowed to move in x and y, and also to scale
separately in each of these dimensions, for a total of four transformation parameters).

i shows the best transformation (translation
and gcaling) of the model with respect to the image, in the sense that it maximizes the
fraction of model edge points that lie near image edge points (within 1 pixel diagonally).
The green points are image egdes, the red points are transformed model edges, and the
yellow points are locations where both an image edge and a transformed model edge are
coincident. Note that there are many red locations adjacent to green ones (which would not
be detected by a method such ag binary correlation).



Another useful, bandpass-filter-
based, non-linear operation:
Contrast normalization

e Maintains more of the signal, but still does
some gain control.

« Algorithm: bp = bandpassed image.

amplitude —— absval = abs(bp);
local contrast—— avgAmplitude = upBlur(blurDn(absval, 2), 2);

Contrast —— contrastNorm = bp ./ (avgAmplitude + const);

normalized
output 24



#1. Range [0, 237] #2. Range [[42.7, 62.9]
Dims [256, 266] Dims [256, 266]

Bandpass filtered

Original image ) _
(deriv of gaussian}®



#1: Range [-42.7, 68.49] #2: Range [4.86e-017, 68.49] #3. Range [0.1849, 24.49]
Dims [256, 256] Dims [256, 256] Dims [256, 256]

Bandpass filtered Absolute value Blurred
absolute value

26



#1: Range [-42.7, 65.9] #2: Range [-3.058, 3.42]
Dims= [256, 256] Dims [256, 256]

Bandpass filtered Bandpass filtered and
contrast normalized



Bandpass filtered Bandpass filtered argd
contrast normalized



Bayesian methods

See Bishop handout, chapter 1 from “Neural Networks
for Pattern Recognition”, Oxford University Press.

29



Simple, prototypical vision problem

Observe some product of two numbers, say 1.0.
What were those two numbers?
le, 1 =ab. FindaandDb.

Cf, simple prototypical graphics problem: here are
two numbers; what’s their product?

30
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l=ab

hyperbola of feasible solutions
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Bayes rule

P(xly) = P(y|x) P(x) / P(y)

32



Bayesian approach

 Want to calculate P(a, b |y =1).
e Use P(a, b |y=1)=kP(y=1la, b) P(a, b).

Posterior probability

Likelihood function

Prior probability

33



Likelthood function, P(obs|parms)

* The forward model, or rendering model,
taking into account observation noise.

« Example: assume Gaussian observation
noise. Then for this problem:

1 ~ (1-ab)?
P(y=1|a,b) = e 27
2O

34



A common criticism of Bayesian
methods

“You need to make all those assumptions
about prior probabilities”.

e Response...?

o “Everyone makes assumptions. Bayesians
put their assumptions out in the open,
clearly stated, where they belong.”

35



Prior probability

In this case, we’ll assume P(a,b)=P(a)P(b),
and P(a) = P(b) = const., 0<a<4.

36



Posterior probability

Posterior = k likelthood prior

~ (1-ab)?

P(a,b|y=1)=ke 2°

for 0 < a,b<4,

0 elsewhere

37



D. H. Brainard and W. T.
Freeman, Bayesian Color
Constancy, Journal of the
Optical Society of
America, A, 14(7), pp.
1393-1411, July, 1997
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(a) Posterior Probability

38



For that posterior probability, what is the best
pair of numbers, (a,b), to pick, given your
observation ab = 1?

39



|_oss functions

40



«—— Cross-section
at (1,1)

cross-section
at (4,1/4)

Ajjgeqoud Jousysod

0
- —
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(b) Ridge Thickness

Variations

Figure 1: Bayesian analysis of the problem ab = 1.
Assuming uniform prior probabilities over the graphed
region, (a) shows the posterior probability for gaussian
observation noise of variance 0.18. T'he noise broadens
the geometric solution into a hyperbola—shaped ridge of
maximum prebability. (b) Note the different thickness
of the ridge; some parts have more local probability
mass than others, even though the entire ridge has a
constant maximum height.

41

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the

Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



lOSS

estimate

true value

42



Bayesian decision theory

parameter variable. z. A loss function L(z.Z) specifies the penalty for estimating Z when the
frue value is z, Kknowing the posterior probability. one can select the parameter values which

minimize the expected loss for a particular loss function:
[expected loss] = /[po.‘stcriur] loss function] d [parameters]
- . T : ~ .
Rizly) = -C /[cxp [— 5o |y — f[lz)”‘a] P,lz)] Llz.z) daz. (21)

where we have substituted from Bayes™ rule. Eq. (4). and the noise model, Eq. (3). The optimal

estimate is the parameter z of minimum risk.

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 43
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



Convolve loss function with
posterior
ypically, L(z, z) = L(z-z), and the integral
for the expected loss becomes a convolution

of the posterior probability with the loss
function.

44



(b) MMSE loss fn.

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

45



, 14(7), pp. 1393-1411, July,

46

) MMGSE risk

(e) (minus



(a) MAP loss fn.

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 47
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

(d) (minus) MAP risk

48



¢) MLM loss

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

Il.

49



Local mass loss function may be
useful model for perceptual tasks

50
http://sportsillustrated.cnn.com/baseball/college/2000/college_world_series/news/2000/06/15/cws_notebook_ap/tl_borchard_ap_01.jpg



51

MLM risk

of the
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Color Constancy, Journa

D. H. Brainard and W. T. Freemargﬁaye)sian

Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



Reminder of color constancy demo




53









Figure 2: Left column: Three loss functions. Plots
show penalty for guessing parameter values offset from
the actual value, taken to be the plot center. (a) Minus
delta function loss, assumed in MAP estimation. Only
precisely the correct answer matters. (b) Squared er-
ror loss (a parabola), used in MMSE estimmation. Very
wrong guesses can carry inordinate influence. (c¢) Mi-
nus local mass loss function. Nearly correct answers are
rewarded while all others carry nearly equal penalty.
Right column: Corresponding expected loss, or Bayes
risk, for the v = ab problem. Note: loss ncreases ver-
tically, to show extrema. (d) Expected loss for MAP
estiinator 1s 1minus the posterior probability. There is
no unique point of mininmun loss. (e) The minimum
mean squared error estimate, (1.3,1.3) (arrow) does not
lie along the ridge of solutions to ab = 1. (f) The mi-
nus local mass loss favors the point (1.0,1.0) (arrow),
where the ridge of high probability 1s widest. There is
the most probability mass i that local neighborhood.

56
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D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the

Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



Figure 3: Visual comparison of illumination spec-
trum estimates for four ceolor constancy algorithins:
local mass, gray world, MAP and subspace. lor a
given illuminant, shown i dark line, a set of surfaces
was drawn ifrom the prior distribution 19 times. For
each draw, each algorithm estimated the 1lluminant
reflectance spectrum. The maximum local mass esti-
mates, {a), are grouped closest to the actual illumina-
tion spectrum. The gray world algorithm estimates,
(b), have wider variability. The MAP estimator, (c],
1gnores relevant information in the posterior cistribu-
tlon, which results in a systematic blas of 1ts estlmates.
The subspace algerithm, (d), was not designed to work
under the tested conditions, and performs poorly.

58
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Figure 4: Summary resulis. (a)] shows the perfor-
mance of all four algorithms for three llluminants. (b)
shows the performance of all four algorithms for three
surface draw conditions. The performance measure is
the average (over 19 individual runsj fractional root
mean squared error (HMSE) between the estunate and
true Mluminant. For all conditions, the MLM estimate
performs substantially better than the other algerithms.
It 15 seen to be robust against these vielations of its prier
assumptions.

59

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the

Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997



Regularization vs Bayesian
Interpretations

e (1-ab)” + A(a” +b%)
~ (1-ab)?
Bayes: e 202 e_}*(aZ‘FbZ)

maximize ‘ ‘

likelihood prior
60



Bayesian interpretation of
regularization approach

 For this example:

— Assumes Gaussian random noise added before
observation

— Assumes a particular prior probability on a, b.
— Uses MAP estimator (assumes delta fn loss).

61



Why the difference matters

Know what the things mean

Speak with other modalities in language of
probability

_oss function

Bayes also offers principled ways to choose
between different models.

62



Example image

63



Multiple shape explanations

shapes for different assumed light directions

64
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994,



Generic shape interpretations render to
the image over a range of light directions

shape 5 iImage

assumed

linht directinn

image

bbbt

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.



|_oss function

L(s,0]y) = j P(s',0' y)I(s,0,s',0')ds'sO’

66



estimate

true value
loss

(&)

(b)

Figure 10: Loss [unction interpretation of generic viewpoint assumption. (a) shows the general
form for a shilt invariant loss function. The function L{z,z) describes the penalty for guessing
the parameter z when the acutal value was z. The marginalization over generic variables of
Eq. (5} followed by MAP estimation 1s equivalent to using the loss function of (b}. (¢} Shows
another possible form for the loss function, discussed in [11, 23, 24, G5].

67
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994,



Shape probabilities

1.0 1.0

0.10 0.08 0.10

1 2 3 1 5

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994,



Comparison of shape explanations

 Lighting
“genericity” of
the shape 0.48
explanation: >
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