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Advances in Computer Vision

Prof. Bill Freeman

Model-based vision
• Hypothesize and test
• Interpretation Trees
• Alignment
• Pose Clustering
• Geometric Hashing

Readings:   F&P Ch 18.1-18.5 2

Model-based Vision

Topics:
– Hypothesize and test

• Interpretation Trees
• Alignment

– Interpretation trees
– Hypothesis generation methods

• Pose clustering
• Invariances
• Geometric hashing

– Verification methods
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Object recognition as a function of 
time in computer vision research

~1985 ~1995 ~2005

Picking identical 
parts from a pile

Recognizing instances 
of textured objects

Recognizing object 
classes, material 

properties

http://images.google.com/imgres?imgurl=http://www.displayit-
info.com/food/images/desserts/2131.JPG&imgrefurl=http://www.displayit-

info.com/food/dessert6.html&h=504&w=501&sz=181&tbnid=FXJATGzVyA4J:&tbnh=128&tbnw=127&st
art=13&prev=/images%3Fq%3Dice%2Bcream%2Bsundae%26hl%3Den%26lr%3D%26sa%3DG

dollarfifty.tripod.com/ pho/004lg.jpg 

http://www.fanuc.co.jp/en/product/robot/rob
otshow2003/image/m-16ib20_3dv_e.gif
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Paths to computer vision research

Computer vision

Computer science Electrical engineering,
physics

Tools:
Binary numbers,
Counting,
Threshold tests,

Graph cuts.

Tools:
Real numbers,
Probabilities,
Soft decisions,

Belief propagation.
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Approach

• Given
– CAD Models (with features)
– Detected features in an image

• Hypothesize and test recognition…
– Guess 
– Render 
– Compare
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Hypothesize and Test Recognition

• Hypothesize object identity and correspondence
– Recover pose
– Render object in camera
– Compare to image

• Issues
– where  do the hypotheses come from?
– How do we compare to image (verification)?
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Features?
• Points

but also,
• Lines
• Conics
• Other fitted curves
• Regions (particularly the center of a region, etc.)
• More descriptive local features (eg work by 

Schmid and Lowe).  “…of intermediate complexity, which 
means that they are distinctive enough to determine likely matches in a 
large database of features, but are sufficiently local to be insensitive to 
clutter and occlusion”.  (Lowe, CVPR01)
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How to generate hypotheses?

• Brute force
– Construct a correspondence for all object features to 

every correctly sized subset of image points
– Expensive search, which is also redundant.
– L objects with N features
– M features in image
– O(LMN) !
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Brute force method
L models                                      image

A                 B                  C

Try all M image feature points for a model point,
Then try all M-1 remaining image feature points for another model 
point, then all M-2 for the next, etc.

M * (M-1) * (M-2) …* (M-N+1)   for each of L models= O(LMN )

M pts

N pts
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Ways around that combinatorial 
explosion

• Add geometric constraints to prune search, leading 
to interpretation tree search

• Try subsets of features (frame groups)…
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Frame groups
• A group of features that can yield a camera hypothesis.
• If you know the intrinsic parameters of your camera, then 

these are the set of features needed to specify the object’s 
pose relative to the camera.

• With a perspective camera model, known intrinsic camera 
parameters, some frame groups are:

3 points Trihedral vertex, and a 
point (for scale)

Dihedral vertex, 
and a point
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Adding constraints

• Correspondences between image features and 
model features are not independent.

• A small number of good correspondences yields a 
reliable pose estimation --- the others must be 
consistent with this.

• Generate hypotheses using small numbers of 
correspondences (e.g. triples of points for a 
calibrated perspective camera, etc., etc.)
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Pose consistency / Alignment

• Given known camera type in some 
unknown configuration (pose)
– Hypothesize configuration from set of initial 

features
– Backproject 
– Test
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Rendering an object into the image
Perspective camera
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Rendering an object into the image

ii APp Π=
Affine camera
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Rendering ith 3d pt to 2d 
image position

Orthographic camera
General affine transformation
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A frame group for an affine camera model

ii APp Π=
Affine camera
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Rendering ith 3d pt to 2d 
image position
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Orthographic 
camera

General affine 
transformation

Relating observed 2-d positions to 3-d model positions

Need at least 4 points in general position to determine the affine camera parameters.

(Note:  only the 1st 2 rows of A contribute to the projection, so we only need to 
estimate them.)
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Alignment algorithm

18
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More than 1 object in image

• Require same intrinsic camera parameters 
for each object.
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Model-based Vision

Topics:
– Hypothesize and test

• Interpretation Trees
• Alignment

– Interpretation trees
– Hypothesis generation methods

• Pose clustering
• Invariances
• Geometric hashing

– Verification methods
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Interpretation Trees

• Tree of possible model-image feature assignments
• Depth-first search
• Prune when unary (binary, …) constraint violated

– length
– area
– orientation

(a,1)

(b,2)

…

…
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Interpretation Trees

[ A.M. Wallace. 1988. ]

“Wild cards” handle spurious image features

http://faculty.washington.edu/cfolson/papers/pdf/icpr04.pdf
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Model-based Vision

Topics:
– Hypothesize and test

• Interpretation Trees
• Alignment

– Interpretation trees
– Hypothesis generation methods

• Pose clustering
• Invariances
• Geometric hashing

– Verification methods
24

• How does the hypothesize and test method 
fail?
– False matches
– Too many hypotheses to consider

• To add robustness and efficiency, use other 
heuristics to select candidate object poses
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Pose clustering

• Each model leads to many correct sets of 
correspondences, each of which has the same 
pose

• Vote on object pose, in an accumulator array (per 
object)

• This is a computer science approach to doing a 
more probabilistic thing:  treating each set of 
feature observations as statistically independent 
and multiplying together their probabilities of 
occurrence to obtain a likelihood function.

26

Pose
Clustering

27

Two models used in an early pose clustering system

28

Pose clustering
Problems

– Clutter may lead to more votes than the target!
– Difficult to pick the right bin size

Confidence-weighted clustering
– See where model frame group is reliable (visible!)
– Downweight / discount votes from frame groups at 

poses where that frame group is unreliable…
– Again, we can make this more precise in a probabilistic 

framework later.

29

pick feature pair

dark regions show reliable-pose-estimate views of those 
features over the viewing sphere

30

Test image, with edge points marked
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Image with edges of found models overlaid

32

33

Detected airplanes, 
rerendered at their detected 
poses.  (Note mis-estimated 
pose of plane on runway.)

34

A more recent pose/view clustering 
example

• “Local feature view clustering for 3D object recognition”, 
by David Lowe (see his web page for copy).

• Schmid, Lowe   incorporate “super-features”, point 
features with robust local image descriptors
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Detecting 0.1% inliers among 99.9% outliers?

• Example: David Lowe’s SIFT-based Recognition system
• Goal: recognize clusters of just 3 consistent features 

among 3000 feature match hypotheses
• Approach

– Vote for each potential match according to model ID 
and pose

– Insert into multiple bins to allow for error in similarity 
approximation

– Using a hash table instead of an array avoids need to 
form empty bins or predict array size

[Lowe]
36

Lowe’s Model verification step

• Examine all clusters with at least 3 features
• Perform least-squares affine fit to model.  
• Discard outliers and perform top-down check for 

additional features.
• Evaluate probability that match is correct

– Use Bayesian model, with probability that features 
would arise by chance if object was not present

– Takes account of object size in image, textured regions, 
model feature count in database, accuracy of fit (Lowe, 
CVPR 01)

[Lowe]
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Solution for affine parameters

• Affine transform of [x,y] to [u,v]:

• Rewrite to solve for transform parameters:

[Lowe]
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Models for planar surfaces with SIFT keys:

[Lowe]
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Planar recognition

• Planar surfaces can be 
reliably recognized at a 
rotation of 60° away 
from the camera

• Affine fit approximates 
perspective projection

• Only 3 points are 
needed for recognition

[Lowe]
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3D Object Recognition

• Extract outlines 
with background 
subtraction

[Lowe]
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3D Object Recognition

• Only 3 keys are 
needed for 
recognition, so extra 
keys provide 
robustness

• Affine model is no 
longer as accurate

[Lowe]
42

Recognition under occlusion

[Lowe]
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Model-based Vision

Topics:
– Hypothesize and test

• Interpretation Trees
• Alignment

– Interpretation trees
– Hypothesis generation methods

• Pose clustering
• Invariances
• Geometric hashing

– Verification methods
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Geometric Invariant recognition
• It’s a pain to compute some many pose or 

correspondences for verification.  So insert a 
pruning step that is invariant to camera/object 
pose parameters.

• Affine invariants
– Planar invariants
– Geometric hashing

• Projective invariants
– Determinant ratio

• Curve invariants
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Invariance
• There are geometric properties that are invariant to 

camera transformations
• Easiest case:  view a plane object in scaled 

orthography.
• Assume we have three base points P_i on the 

object
– then any other point on the object can be written as

Pk = P1 + µka P2 − P1( )+ µkb P3 − P1( )
46

Invariance

• Now image points are obtained by multiplying 
by a plane affine transformation, so

pk = APk

= A P1 + µka P2 − P1( )+ µkb P3 − P1( )( )
= p1 + µka p2 − p1( )+ µkb p3 − p1( )
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Invariance

Given the base points in the image, read off the µ
values for the object
– they’re the same in object and in image --- invariant
– search correspondences, form µ’s and vote

pk = APk

= A P1 + µka P2 − P1( )+ µkb P3 − P1( )( )
= p1 + µka p2 − p1( )+ µkb p3 − p1( )

Pk = P1 + µka P2 − P1( )+ µkb P3 − P1( )

48

Indexing 

• Operation that lets you select the model 
from a menu of possible ones, before you 
need to find the pose and verify.

http://www.tnt.uni-hannover.de/project/imgint/industrial/3dpos/3DLageerkennung.gif
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Indexing with invariants

• Generalize to heterogeneous geometric 
features

• Groups of features with identity 
information invariant to pose – invariant 
bearing groups

50

Projective invariants

• Projective invariant for coplanar points
• Perspective projection of coplanar points 

is a plane perspective transform:
p=MP        p=AP,  with 3x3 A

• determinant ratio of 5 point tuples is 
invariant

det pi pj pk[ ]( )det pi pl pm[ ]( )
det pi pj pl[ ]( )det pi pk pm[ ]( )

51

det pi pj pk[ ]( )det pi pl pm[ ]( )
det pi pj pl[ ]( )det pi pk pm[ ]( )

=
det APiAP j AP k[ ]( )det APiAPl AP m[ ]( )
det AP iAP jAPl[ ]( )det APiAP k APm[ ]( )

=
det A PiPjPk[ ]( )det A PiPlPm[ ]( )
det A PiPjPl[ ]( )det A PiPk Pm[ ]( )

=
det A( )2( )
det A( )2( )

det PiPjPk[ ]( )det PiPlPm[ ]( )
det PiPjPl[ ]( )det PiPkPm[ ]( )

=
det PiPjPk[ ]( )det PiPlPm[ ]( )
det PiPjPl[ ]( )det PiPk Pm[ ]( )
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Geometric Hashing
• Objects are represented as sets of “features”
• Preprocessing:

– For each tuple b of features, compute location 
(µ) of all other features in basis defined by b

– Create a table indexed by (µ)
– Each entry contains b and object ID

S. Rusinkiewicz
[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]
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Geometric hashing

;1,5,6
;4,5,7 ;4,5,7

;1,3, 4 / ;1,5,6 ;1,3,4
;2,3,6

D
A A

A D D
B

⎛ ⎞
⎜ ⎟
⎜ ⎟
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1 2

345 6

7 8

Models
Hash table

1 2

34

5 6

7 8

1
2

34
5
6 54

GH: Identification
• Find features in target image
• Choose an arbitrary basis b’
• For each feature:

– Compute (µ’) in basis b’
– Look up in table and vote for (Object, b)

• For each (Object, b) with many votes:
– Compute transformation that maps b to b’
– Confirm presence of object, using all available 

features
S. Rusinkiewicz

[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]
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Geometric Hashing

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997
[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]
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Basis Geometric 
Hashing

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997
[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]
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Geometric Hashing

Wolfson and Rigoutsos, Geometric Hashing, an Overview, 1997
[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]
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==b

59

Tangent invariance

• Incidence is preserved despite transformation

• Transform four points above to unit square: 
measurements in this canonical frame will be 
invariant to pose.

M-curve construction

60
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From Rothwell et al, CVPR 92.

Recognizing planar objects using invariants.

Input image Edge points fitted with lines or conics

Objects that have 
been recognized 
and verified.
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Verification
• Edge score

– are there image edges near predicted object edges?
– very unreliable; in texture, answer is usually yes

• Oriented edge score
– are there image edges near predicted object edges with the right

orientation?
– better, but still hard to do well (see next slide)

• Texture largely ignored [Forsythe]
– e.g. does the spanner have the same texture as the wood?

63

52% of the edge points for this candidate object were 
verified in the wood texture underneath.

Rothwell et al, CVPR 92. 64

Algorithm Sensitivity 

Grimson and Huttenlocher, 1990

• Geometric Hashing
– A relatively sparse hash table is critical for good 

performance
– Method is not robust for cluttered scenes (full hash 

table) or noisy data (uncertainty in hash values)
• Generalized Hough Transform

– Does not scale well to multi-object complex scenes
– Also suffers from matching uncertainty with noisy 

data

[http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/rigid_registration.pdf]
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Comparison to template matching

• Costs of template matching
– 250,000 locations x 30 orientations x 4 scales = 30,000,000 

evaluations
– Does not easily handle partial occlusion and other variation 

without large increase in template numbers
– Viola & Jones cascade must start again for each qualitatively 

different template
• Costs of local feature approach

– 3000 evaluations (reduction by factor of 10,000)
– Features are more invariant to illumination, 3D rotation, and object 

variation
– Use of many small subtemplates increases robustness to partial 

occlusion and other variations

[Lowe]
66

Model-based Vision

Topics:
– Hypothesize and test

• Interpretation Trees
• Alignment

– Hypothesis generation methods
• Pose clustering
• Invariances
• Geometric hashing

– Verification methods


