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Abstract—Computer graphics rendering software is ca-
pable of generating highly photorealistic images that can
be impossible to differentiate from photographic images.
As a result, the unique stature of photographs as a defini-
tive recording of events is being diminished (the ease with
which digital images can be manipulated is, of course,
also contributing to this demise). To this end, we describe
a method for differentiating between photorealistic and
photographic images. Specifically, we show that a statistical
model based on first- and higher-order wavelet statistics
reveals subtle but significant differences between photore-
alistic and photographic images.

I. INTRODUCTION

Sophisticated computer graphics rendering software
can generate remarkably photorealistic images. Though
it may take some effort, photorealistic images can be cre-
ated that are nearly impossible to differentiate from pho-
tographic images. And as the rendering technology im-
proves, photorealistic images will become increasingly
easier to generate and more realistic.

This technology is already having direct implications
on our society. For example, in 1996 the United States
Congress passed The Child Pornography Prevention Act
which, in part, prohibited any image that appears to be
or conveys the impression of someone under 18 engaged
in sexually explicit conduct. This law made illegal com-
puter generated pictures that only appear to show minors
involved in sexual activity. In 2002, however, the United
States Supreme Court struck down this law in their 6-3
ruling in Ashcroft v. Free Speech Coalition - the court
said language in the 1996 child pornography law was
unconstitutionally vague and far-reaching. This ruling
makes it considerably more difficult for law enforcement
agencies to prosecute child pornography crimes, since it
is always possible to claim that any image is computer
generated.

If we are to have any hope that photographs will again
hold the unique stature of being a definitive recording
of events, we must develop technology that can differ-
entiate between photographic and photorealistic images.

There has been some work in evaluating the photorealism
of computer graphics rendered images from a human
perception point of view (e.g., [10], [9], [11]). To our
knowledge, however, no computational techniques exist
to differentiate between photographic and photorealis-
tic images (a method for differentiating between photo-
graphic and (non-realistic) graphical icons was proposed
in [1]). Related work, though probably not directly ap-
plicable, include techniques to differentiate between city
and landscape images [16], [14], in-door and out-door
images [13], and photographs and paintings [4].

In this paper we describe a statistical model for pho-
tographic images that is built upon a wavelet-like de-
composition. The model consists of first- and higher-
order statistics that capture regularities that are inherent
to photographic images. We then show that this model
can be used to differentiate between photographic and
photorealistic images - from a database of 40, 000 pho-
tographic and 6, 000 photorealistic images, we correctly
classify approximately 67% of the photographic images
while only mis-classifying approximately 1% of the pho-
torealistic images. We have previously used a similar
technique to detect messages hidden within digital im-
ages (steganography) [7], [8].

II. STATISTICAL MODEL

The decomposition of images using basis functions
that are localized in spatial position, orientation, and
scale (e.g., wavelet) have proven extremely useful in
image compression, image coding, noise removal, and
texture synthesis. One reason is that such decompositions
exhibit statistical regularities that can be exploited. The
image decomposition employed here is based on sepa-
rable quadrature mirror filters (QMFs) [15], [18], [12].
As illustrated in Figure 1, this decomposition splits the
frequency space into multiple scales, and orientations (a
vertical, a horizontal, and a diagonal subband). For a
color (RGB) image, the decomposition is applied inde-
pendently to each color channel. The resulting vertical,
horizontal, and diagonal subbands for scale i are denoted
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Fig. 1: Shown on the left is an idealized multi-scale and orientation decomposition of frequency space. Shown, from
top to bottom, are levels 0, 1, and 2, and from left to right, are the low-pass, vertical, horizontal, and diagonal subbands.
Shown on the right is the magnitude of a multi-scale and orientation decomposition of a “disc” image.

as V c
i (x, y), Hc

i (x, y), and Dc
i (x, y) respectively, where

c ∈ {r, g, b}.
Wavelet subband coefficients for natural images typ-

ically follow a distribution which is well modeled by
a generalized Laplacian P (x) = 1

Z e−|x/s|p , where s, p
are the density parameters, and Z is a normalizing con-
stant [2]. This family of densities are characterized by a
sharp peak at zero and large symmetric tails. An intu-
itive explanation for this is that natural images typically
contain large smooth regions and abrupt transitions (e.g.,
edges). The smooth regions, though dominant, produce
small coefficients near zero, while the transitions gen-
erate large coefficients. In our statistical model, instead
of directly estimating the generalized Lapalacian distri-
bution, a simpler approach is taken to characterize these
marginal distributions. More specifically, the first four
order statistics (mean, variance, skewness, and kurtosis)
of the subband coefficient histograms at each orientation,
scale, and color channel are collected. These statistics
form the first half of our statistical model.

While these statistics describe the basic coefficient dis-
tributions, they are unlikely to capture the strong corre-
lations that exist across space, orientation, and scale [2],
[6]. For example, salient image features such as edges
tend to orient spatially in certain direction and extend
across multiple scales. These image features result in
substantial local energy across many scales, orientations,
and spatial locations. The local energy can be roughly
measured by the magnitude of the decomposition co-

efficient. As such, a strong coefficient in a horizontal
subband may indicate that its left and right spatial neigh-
bors in the same subband will also have a large value.
Similarly, if there is a coefficient with large magnitude
at scale i, it is also very likely that its “parent” at scale
i + 1 will also have a large magnitude.

In order to capture some of these higher-order statis-
tical correlations, we collect a second set of statistics
that are based on the errors in a linear predictor of co-
efficient magnitude [2]. For the purpose of illustration,
consider first a vertical band of the green channel at
scale i, V g

i (x, y). A linear predictor for the magnitude
of these coefficients in a subset 1 of all possible spatial,
orientation, scale, and color neighbors is given by:

|V g
i (x, y)| = w1|V

g
i (x− 1, y)|+ w2|V

g
i (x + 1, y)|

+ w3|V
g
i (x, y − 1)|+ w4|V

g
i (x, y + 1)|

+ w5|V
g
i+1

(x/2, y/2)|+ w6|D
g
i (x, y)|

+ w7|D
g
i+1

(x/2, y/2)|+ w8|V
r
i (x, y)|

+ w9|V
b
i (x, y)|, (1)

where | · | denotes absolute value and wk are the scalar
weights. This linear relationship can be expressed more
compactly in matrix form as:

~v = Q~w, (2)

1The particular choice of neighbors was motivated by the obser-
vations of [2] and modified to include non-casual neighbors.
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where ~v contains the coefficient magnitudes of V g
i (x, y)

strung out into a column vector (to reduce sensitivity to
noise, only magnitudes greater than 1 are considered),
the columns of the matrix Q contain the neighboring
coefficient magnitudes as specified in Equation (1), and
~w = (w1 ... w9)

T . The weights ~w are determined by
minimizing the following quadratic error function:

E(~w) = [~v − Q~w]2. (3)

This error function is minimized by differentiating with
respect to ~w:

dE(~w)

d~w
= 2QT (~v − Q~w), (4)

setting the result equal to zero, and solving for ~w to
yield:

~w = (QTQ)−1QT~v. (5)

Given the large number of constraints (one per pixel) in
only nine unknowns, it is generally safe to assume that
the 9 × 9 matrix QTQ will be invertible.

Given the linear predictor, the log error between the
actual coefficient and the predicted coefficient magni-
tudes is:

~p = log(~v) − log(|Q~w|), (6)

where the log(·) is computed point-wise on each vector
component. As with the coefficient statisics, mean, vari-
ance, skewness, and kurtosis of this error distribution
are collected. This process is repeated for scales i =
1, ..., n− 1, and for the subbands V r

i and V b
i , where the

linear predictors for these subbands are of the form:

|V r
i (x, y)| = w1|V

r
i (x − 1, y)|+ w2|V

r
i (x + 1, y)|

+ w3|V
r
i (x, y − 1)|+ w4|V

r
i (x, y + 1)|

+ w5|V
r
i+1(x/2, y/2)|+ w6|D

r
i (x, y)|

+ w7|D
r
i+1(x/2, y/2)|+ w8|V

g
i (x, y)|

+ w9|V
b
i (x, y)|, (7)

and

|V b
i (x, y)| = w1|V

b
i (x − 1, y)|+ w2|V

b
i (x + 1, y)|

+ w3|V
b
i (x, y − 1)|+ w4|V

b
i (x, y + 1)|

+ w5|V
b
i+1(x/2, y/2)|+ w6|D

b
i (x, y)|

+ w7|D
b
i+1(x/2, y/2)|+ w8|V

r
i (x, y)|

+ w9|V
g
i (x, y)|. (8)

A similar process is repeated for the horizontal and di-
agonal subbands. As an example, the predictor for the

green channel takes the form:

|Hg
i (x, y)| = w1|H

g
i (x − 1, y)|+ w2|H

g
i (x + 1, y)|

+ w3|H
g
i (x, y − 1)| + w4|H

g
i (x, y + 1)|

+ w5|H
g
i+1

(x/2, y/2)|+ w6|D
g
i (x, y)|

+ w7|D
g
i+1

(x/2, y/2)|+ w8|H
r
i (x, y)|

+ w9|H
b
i (x, y)|, (9)

and

|Dg
i (x, y)| = w1|D

g
i (x − 1, y)|+ w2|D

g
i (x + 1, y)|

+ w3|D
g
i (x, y − 1)|+ w4|D

g
i (x, y + 1)|

+ w5|D
g
i+1

(x/2, y/2)|+ w6|H
g
i (x, y)|

+ w7|V
g
i (x, y)|+ w8|D

r
i (x, y)|

+ w9|D
b
i (x, y)|. (10)

For the horizontal and diagonal subbands, the predictor
for the red and blue channels are determined in a similar
way as was done for the vertical subbands, Equations (7)-
(8). For each oriented, scale and color subband, a similar
error metric, Equation (6), and error statistics are com-
puted.

For a multi-scale decomposition with scales i = 1, ..., n,
the total number of basic coefficient statistics is 36(n−1)
(12(n − 1) per color channel), and the total number of
error statistics is also 36(n − 1), yielding a grand total
of 72(n − 1) statistics. These statistics form the feature
vector to be used to discriminate between photorealistic
and photographic images.

III. CLASSIFICATION

From the measured statistics of a training set of images
labeled as photorealistic or photographic, our goal is to
build a classifier that can determine to which category a
novel test image belongs.

To this end, linear discrimination analysis (LDA) is a
widely used classification algorithm [5]. In a two-class
LDA a one-dimensional linear subspace is found such
that when the features are projected onto this subspace,
the within-class scatter is minimized while the between-
class scatter is maximized. LDA is attractive because of
its general effectiveness and simplicity (the classifier is
built using a closed-form generalized eigenvector solu-
tion). The drawback of LDA is that the classification
surface is constrained to be linear.

Support vector machines (SVM) afford a more flexible
non-linear classification surface [17]. Within this family
of classifiers there are both linear and non-linear SVMs.
A linear SVM is similar to an LDA, the difference being
in the objective function that is minimized. A non-linear
SVM extends a linear SVM by using a kernel function to



4

map the training exemplars into a higher (possibly infi-
nite) dimensional space. While affording a more flexible
classifier, the construction of a non-linear SVM is no
longer closed-form, but requires an iterative numerical
optimization.

We employed both LDA and a non-linear SVM for
the purposes of distinguishing between photorealistic and
photographic images.

IV. RESULTS

Shown in Figures 2 and 3 are several images taken
from a database of 40, 000 photographic and 6,000 pho-
torealistic images2. All of the images consist of a broad
range of indoor and outdoor scenes, and the photoreal-
istic images were rendered using a number of different
software packages (e.g., 3D Studio Max, Maya, Soft-
Image 3D, PovRay, Lightwave 3D and Imagine). All of
the images are color (RGB), JPEG compressed (with an
average quality of 90%), and typically on the order of
600× 400 pixels in size.

From this database of 46, 000 images, statistics as
described in Section II were extracted. To accommo-
date different image sizes, only the central 256 × 256
region of each image was considered. For each image
region, a four-level three-orientation QMF pyramid 3 was
constructed for each color channel, from which a 216-
dimensional feature vector (72 per color channel) of co-
efficient and error statistics was collected.

From the 46, 000 feature vectors, 32, 000 photographic
and 4, 800 photorealistic feature vectors were used to
train both an LDA and a non-linear SVM 4. The remain-
ing feature vectors were used to test the classifiers. In

2The photographic images were downloaded from
www.freefoto.com, the photorealistic images were downloaded
from www.raph.com and www.irtc.org.

3We employed a 9-tap QMF filter as the basis of the multi-scale
multi-orientation image decomposition. The low-pass, l, and high-
pass, h, filters are given by:

l = [0.02807382 − 0.060944743 − 0.073386624

0.41472545 0.7973934 0.41472545

−0.073386624 − 0.060944743 0.02807382]

h = [0.02807382 0.060944743 − 0.073386624

−0.41472545 0.7973934 − 0.41472545

−0.073386624 0.060944743 0.02807382].

We also have experimented with both Laplacian and steerable pyra-
mid decompositions. Results from a steerable pyramid (with eight
orientation subbands) were similar to the results using a QMF
pyramid (which use only three orientation subbands). The Laplacian
pyramid generally gave poor results. So while it seems that oriented
subbands are necessary, it also seems that a finer orientation tuning
is not necessary for this particular task.

4We employed the SVM algorithm implemented in LIBSVM [3],
along with an RBF kernel.

training testing
LDA SVM LDA SVM

photographic 58.7 70.9 54.6 66.8
photorealistic 99.4 99.1 99.2 98.8

TABLE I: Classification results using LDA and SVM.
Shown are the average accuracies (in percent) over
100 random training/testing splits of the database of
40, 000 photographic and 6, 000 photorealistic images.

the results presented here, the training/testing split was
done randomly. We report, in Table I, the classification
accuracy averaged over 100 such splits. With an 0.8%
false-negative rate (a photorealistic image classified as
photographic), the LDA correctly classified 54.6% of
the photographic images. A non-linear SVM had better
performance, correctly classifying 66.8% of the pho-
tographic images, with a 1.2% false-negative rate (the
variances over the 100 splits was 3.46% and 0.09%, re-
spectively). Note that in both cases this testing accuracy
was fairly close to the training accuracy, suggesting that
the classifiers generalized.

We next wondered which images were most easy and
most difficult to classify. Specifically, images that are
easy to classify are those that are far from the separating
classification surface, and those that are hard to classify
are near, or on the wrong side of, the classification sur-
face. Shown in Figures 4 and 5 are eight photographic
images and eight photorealistic images, respectively, that
were easily classified under the non-linear SVM. Shown
in Figure 6 are eight photographic images, furthest away
from the classification surface, that were incorrectly clas-
sified. Shown in Figure 7 are eight incorrectly classified
photorealistic images, furthest away from the classifica-
tion surface.

We further tested the RBF SVM classifier on a novel
set of fourteen images (7 photographic, 7 photorealistic)
from the website www.fakeorfoto.com. Shown in
Figure 9 are the fourteen images with the correctly clas-
sified photographic images in the top row, and the cor-
rectly classified photorealistic images in the middle row.
Shown in the bottom row are three incorrectly classified
photographic images (left) and two incorrectly classified
photorealistic images (right).

We wondered which set of statistics, coefficient or
error, were most crucial for the classifier. Shown in Fig-
ure 8 is the accuracy of the classifier plotted against the
number and category of feature for the LDA classifier 5.
We began by choosing the single feature, out of the 216

5This analysis was performed only on the LDA because the
computational cost of retraining 23, 220 = 216 + · · ·+ 1 non-linear
SVMs is prohibitive. We expect the same pattern of results for the
non-linear SVM.
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possible coefficient and error features, that gives the best
classification accuracy. This was done by building 216
classifiers each based on a single feature, and choosing
the feature that yields the highest accuracy (the feature
was the variance in the error of the green channel’s diag-
onal band at the second scale). We then choose the next
best feature from the remaining 215 components. This
process was repeated until all features were selected.
The solid line in Figure 8 is the accuracy as a function
of the number of features. The white and gray regions
correspond to error and coefficient features, respectively.
That is, if the feature included on the ith iteration is a
coefficient then we denote that with a vertical gray line
at the ith position on the horizontal axis. Note that the
coefficient and error statistics are interleaved, showing
that both sets of statistics are important for classification.

And finally, we attempted to retrain the non-linear
SVM with random class labels assigned to the training
images. The rationale for this was to ensure that the
statistical model and classifier are discriminating on fun-
damental differences between photographic and photore-
alistic images, and not on some artifact. To this end, we
expect a random class assignment to lead to significantly
worse classification accuracy. We generated ten different
training sets containing 5, 000 randomly selected pho-
tographic images and 5, 000 photorealistic images. One-
half of these images were randomly assigned to the pho-
tographic class and the other half were assigned to the
photorealistic class. We then trained non-linear SVM
classifiers on these training sets and tested them on the
testing sets as used in our experiment described above.
The best performance across the ten training sets was
27.6% correctly classified photographic images, with a
1.4% false-negative rate. Note that this is significantly
worse than the 66.8% detection accuracy when the cor-
rect training labels were used. This result indicates that
our statistical model and classifier are discriminating on
fundamental statistical differences between photographic
and photorealistic images.

V. DISCUSSION

We have described a statistical model for photographic
images consisting of first- and higher-order wavelet statis-
tics. This model seems to capture regularities that are in-
herent to photographic images. We have also shown that
this model, coupled with either an LDA or a non-linear
SVM, can be used to differentiate between photorealistic
and photographic images. It is interesting to see that
even though photorealistic images can be perceptually
indistinguishable from photographic images, their under-
lying statistics can still be significantly different. These

techniques are also likely to have important applications
in the growing field of digital forensics.

There are, of course, several possible extensions to
this work. We expect that these techniques can be ex-
tended to differentiate between synthetically generated
and natural voice signals and video streams. And, as in
earlier work [8] we expect a one-class SVM, that only
requires training from photographic images, to simplify
the classifier training.

Finally we note that it is not immediately obvious
that a photorealistic image could be altered to match the
expected higher-order statistics of photographic images.
The drawback of this, from a rendering point of view,
is that these models don’t necessarily give any insight
into how one might render more photorealistic images.
The benefit, from a digital forensic point of view, is
that it is likely that this model will not be immediately
vulnerable to counter-attacks. It is possible, of course,
that counter-measures will be developed that can foil the
classification scheme outlined here. The development of
such techniques will in turn lead to better classification
schemes, and so on.
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Fig. 2: Eight examples from a database of 40, 000 photographic images. The central 256 × 256 white boxes denote
the region of the image from which statistics are measured.

Fig. 3: Eight examples from a database of 6, 000 photorealistic images. The central 256× 256 white boxes denote the
region of the image from which statistics are measured.

Fig. 4: Easily classified photographic images.
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Fig. 5: Easily classified photorealistic images.

Fig. 6: Incorrectly classified photographic images.

Fig. 7: Incorrectly classified photorealistic images.
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Fig. 8: Shown is the classification accuracy as a function of the number and category of feature for the LDA classifier.
The white and gray regions correspond to error and coefficient features, respectively.

(a)

(b)

(c) (d)

Fig. 9: Images from www.fakeorfoto.com. Shown in (a) and (c) are correctly and incorrectly classified
photographic images, respectively. Shown in (b) and (d) are correctly and incorrectly classified photorealistic images,
respectively.


