Today: Usivg cryptography in practice
In practice, things are messier thaw i theory, and that

is where the attacks often happew.

- Public-key Infrastructure

- TLS (Trawsport Layer Security)

Q: Whew T get an email from Kyle,

how do T kvow that Kyle indeed sewt the email?

A Kyle cav append a digital signature +o

her email.

To verify I veed to know Kyle's pk.

Q: How do T kvow Kyle's pk??

So far, we assumed that the pk's are magically kmown!
How do we all know each others pk's??

Iw some applications, such as bitcoin, the pk is the "name”.

Or ove can use identity based encryptiowl

Problem: What if sk gets lost/stolen?

Our identity is lost/stolen!

Goal: Have a mapping from human intelligible names +o pk's

TsKeyFor(name,pk) = D/
Public-key Infrastructure (PKI)
Example 1: TOFU (Trust on First Use)

Keep a table of pairs (name,pk).

TsKeyFor(name,pk)=1 if and ovly if name is wot in the table

or if (name,pk) in the table.

Used in SSH

Pros: 1. Super simple.

2. I+ is secure if first communication is secure

3. Surprisivgly effective

Cons: 1. No protection if 1st interaction is attacked.
2. Not clear how +o hawdle a key change

(SSH sewnds a warving but then what?)

Certificate based PKIT
A client accepts (name,pk) if avd ovly if a kvown

"certification anthority” (CA) sigwed it.

The CA is v charge of certifying the mapping from

human memorable names to pk's

Example: WIT rums a CA.

Whew T set up wy account at MIT, T received the pk of MIT CA.
When Rov sewds a mmessage to e, it is signed with Ron's pk,

and the pair ("RBon",pk) is signed by the MIT CA,

which attest that indeed +his pk corresponds +o "Ron".

Iv geveral, each client keeps a list of CA that it trusts,

and their PKs (Ex. Google rums a CA).

A client will accept (name,pk) iff this pair is signed by ove of the

CA's that i+ trusts.

which CA's do we trust, and how do we get their pk's??

wWhen the MIT CA send wme its pk, how do T kvow that it is

iwdeed the pk of MIT7?

Chain of trust:

At the top of the chain are the root CAs.

Computers such as Lewovo or Del (that ruv Windows)
come with a list of CA's that the computer trusts.
(My computer has 2 such CA's.)

These CA's are called root CA's.

WMIT CA is viot a root CA, and hewce its pk will be signed by
another CA, whose pk may be signed by avother CA, ete.

until we reach a root CA.

We need to trust Del or Levovo, and their CAs

The fist CA on the list in my computer is "AAA certificate Services',

Not sure what this company is vor why should T trust it.

Example 1: There was av issue with Lenovo:
They shipped computers with a malicions CA installed, that was
intercepting all the traffic from the laptop for the purpose of injecting

adds, This attack is called Superfish.

Example 2. In 2011 the sk of a CA called Digivotar was stolew
or given away. Attackers used it o fake a certificate for google.com.
They used this certificate to intercept hundreds of thousands of

nsers v Lraw.

How can we detect rogue CA's?
Certificate transparency
A new technology (last & years or so) whose purpose is to deal with rogue CAs

1. All CA's posts all the certificates they issued n a public og).
2. Before a certificate is accepted, the browser checks that it is in the public log.
2. Owner of a vame (say mit.edn) checks that this log does vot contain certificates

that were issued for mit.edu that should vot be there.

@Grossly oversimplified...

Certificate Revocation

After a CA has issued a certificate, it may want +o revoke it.
Why?

1. The sk of the owner was stolen

2. Account deactivated (ex. MIT student graduated).

Ovice a CA sigued a (name, pk) pair, it can't unsign i+

1. Expiration: All certificates have an expiration date.

Ex. MIT's certificates expire on Juve 30th
2. Certificate Revocation Lists:

Client software contains a list of revoked certificates (CRL).

(There is a window of vulverability...)

How does the CA verify that T am who I claim I am??

Certificate Tssuavce:

A user sends the CA his "name" and pk (and mowney if it is a commercial CA).
Thew i+ runs a protocol with the CA where the user proves

that he "owns the name”.

Ex., if T want a certificate for a domaiv, say www.yael.org, the CA

can ask me to post something on my domain to see that it is indeed me.

If the adv can corrupt this protocol he can obtain

certificates for domains that it does not controll
Summary:

Pros:

1. User has the flexibility to choose which CA's she trusts.

2. The client only needs +o keep a few pk's of CA's that i+ trusts
(scales well).

2. No ovlive interaction with the CA's!

Cons:
1. Single poivt of failure. Adv. veeds +o bribe ovly ove CA!
2. Validation is quite weak.
At WIT for example we use passwords, so the CA can verify who we are

from our passwords, but in geveral validation is hard.

Ove example of where this is all used in practice is in the TLS protocol,
The TLS (Transport Laver Security) Protocol

TLS Converts a TCP convection +o a secure TLS conmection,

which is encrypted and authenticated conmection,

HTTPs is the same as HTTP where TCP was replaces with TLS

Seems like TLS should be easy, given that we know how +o encrypt and sign!

Why is this hard??

Client and servers run different software, which supports different

cryptographic algorithms

For example, AESGCM is relatively new, if vour software is old i+ will not support it
Version/protocol negotiation is difficutt!

We need to ensire that the attacker cannot trick us o use an old insecure version of

the protocol. Such attacks are called downgrade attacks.

Structure of TLS (V1.3): T+ comsists of +wo parts

Phase 1: Handshake protocol

This is a key exchange protocol

At the end of the handshake protocol we agree on a (AESGIM) sk

Phase 2 Record protocol

the client and server exchange messages in an encrypted and anthenticated way

The complicated part is the handshake protocol, where we veed +o agree on a

key with someone we vever +alked +o before

Example: Suppose T wish +o talk +o the MIT server.
How do T kmow that I am indeed +alking with MIT,

and agreeing on a sk with MIT and vot with evil.com?

The RFC for TLS has 7 security properties!
This is a bit worrysome. First, this is very complicated.

Second, how do we know that they didn't miss a 'th property?

The properties:

1. Correctmess (if both parties are honest they both agree on the same sk).

2. Secarity (session sk looks random to an attacker).

3. Security against dowmgrade attacks

(the version they rum is the same whether the attacker is there or vot).

4. Peer authentication (the client is indeed sharing a sk with WIT and vot evilcom),

5. Forward secrecy wirt. key compromise

(if adv learns all sk's stored on the server, it should viot be able to decrypt data from the past).
DH does wot satisfy forward secarity

b. Protection against key compromise impersonation.

(I ®vil compromises Alice's sk, Evil should viot be able to pretend to be (Google to Alice.

We don't want Evil +o be able +o learn all of Alice's private information, such as credit card vam.)
7. Protection of end-point identities (agaimst passive attacks),

If the adv listens to the handshake it should vot be able to learn the certificate

(of the client of server),

s0 the adv will vot learv which website we are visiting,

The handshake protocol: (Simplified protocol)

Client has a pk of CA, denoted by pkcﬁ
Server has his own sk, , and a signature sig(pk,)

from CA certifying the server's public key.

The havndshake protocol consists of 4 rounds.

1. Client sends "hello" msg:
Sends a list of ciphers it supports
(inclading a group G of order q for DH key exchange)

I+ also chooses random r, in {1,...43 and sendsR _= '?)n

2. Server sends "hello" msa:
Sewds a ciphertext he is willing to use from the list.

I+ also chooses random rg in {1....,43 and sends R, = @r:"

From vow on traffic is encrypted with DH key secret

H(9™ ™), using say AES-GCM.

3. Server sewnds its certificate and a signature ow
all the transeript so far, signed using its secret
sigving key,

4. Client does the following:
a. Computes the shared secret K = H(cjr"ﬁ)
b. Checks that cert is valid,
¢. Checks the travscript sig (under the server's pk)
d. Tt sewnds the server a MAC over the transcript seen

so far, using a key derived from K

(indicating that it is happy).

This simplified version does wot contaiv the

downgrade protection part.

Quite complicated!

Note that the first +wo rounds have wo protection,

and thus the client does not know that it is +alking with
the correct server.

This is by desigm, it hides who the client is talking with.

We want the anthewtication +o be encrypted

for the sake of privacy.

Twdeed the server authenticates itself in round 3.

Forward security is satisfied since after the TLS conmection

is closed, the server will erase the DH key used in this protocol

