Today: Public key encryption
Recall:  Diffie-Hellman Key Exchange:

Let (1 a finite cyclic group of order v (i.e., |G|=v).
Cycelic means that it has a geverator g

st =9, 9* ..0" 3

€9, G= Zp Which is ¢1,..p-13 with mutt, mod p

i which case |Gl=v=p-1.

Let g be a geverator of 1 G=t9, 9"..0" 3

A B

A
Choose at random A=9 Choose at random
ain 1,3, bin {1,..m3,

b

=0
&
Y

ab b a

K:@ =A =P



How do we choose a generator from 7, 2

The order of an elemewnt X v G is smallest + s.t. x* =

Theorewm:

The order of each element divides the order of the group.
For Z, * the order of each element g divides p-1.

Choose p to be a safe prime: p-1=24, where 4 is a prime.
Thus, each element g in Zg is of order 1, 2, 4, or 24.
There are only 2 elemewts of order 4,2 1 and p-1

(since degree 2. polynomial £(x)=x* has at most 2 roots).

The remaivivg p-3 elements are of order q or 29=p-1,
half of the remaiving are of order q and half are of order 24:

Consider the fuvction f: Z,— Z; where £(x)=x* mod p.

The image of this fumctiow is of size (p-1)/2,
since each element x v the image has exactly two roots

X and p-X.



The image is the set of all duadratic residues (by def),
and each element v the image is of order 1 or 4.

There is ovly ove element of order 1 and hewce (p-3)/2 of order a.

Thus, there are (p-3)/2 of the elements +that are vot of +he form x*

and all these are generators (i.e. of order p-1).

To choose a generator of Z, (where p=24+1 is a safe prime)
choose a random g, and check that o? #1 and that g% A1

If this is ot the case try again.

Discrete Log Assumption:

Givew a group (7 with generator g, it holds that givew g
for a randowm x i {1,..m3 where n=|G|.

it is hard +to find x.

Namely, the function f(x)=g* is a one way fumction.



Computational Diffie-Hellman (CDH) Assumption:
Given 9% g © it is hard +o compute of** , except with negl probability.
A passive adv cawnot guess K assuming CDH!

This naturally lends itself to public key encryption!

Pefinition:

A public key encryption scheme consists of three efficient (randomized)

algorithms: (zew, Ene, Dee, with the following syntax:

1. (Gev takes as input security parameter and outputs a pair of secret and
public keys (skpk).

2. Ewe takes as input a public key pk and a msg m (from the msag space)
and outputs a ciphertext ct.

3. Dec takes as input a secret key sk avd a ciphertext ct and outputs a

message w (from the message space) or avort.

Correctness:

For every (sk,pk) geverated according to (zen, and for every msg m
(from the wmsq space),

PrDec(sk, Evc(pk,m))=m]=A.



Note:

A public key encryption schewe is a digital analog of a locked box,

where ovly the receiver has the key.

Applications of public key encryption:

1. Key-exchange:

Server sends a public key pk to browser.
Browser chooses random K and sends Euc(pk,K) to server.,

Now the server share a symmertric key and use that for commumication!

2. Secure email:

A user A want to encrypt an email to another user B.

If A has pk, then she cawn use it +o send encrypted emails +o B.

Security:

As v the symmetric key setting, we cosider +wo flavors of security:
CPA (Chosew Plaintext Attack) security and

CCA (Chosen Ciphertext Attack) security.



CPA Security (ak.a semavntic security):

For every m and m' (from the msqg space),
(pk, Enc(pkm)) = (pk, Bvc(pkm'))
for a randomly chosewn pk chosen accordivg to Gew.
Note:
This defivition is much simpler than CPA definition in the symmetric

setting!

The reason is that n the public-key setting, the adversary can encrypt

msgs on his oww using pkl



CCA security:

Any efficient adv. wivs in the following game ouly with prob.

1/2 + veg)ligible:

Challenger Adv

Geverate (pk,sk) pk
by runnivg (zew

~
r

ct

£
Y

Dec(sk,ct) N

py W\o, Wh
Choose a random bit b, A
let ct = Buc(pk, my) ct*=Dec(sket ) N
ct

&
Y

only if ot =/ot* — Deo(sket)

>

Adv wins if b=b'



El-Gamal Evcryption schewme:

Let (G be a fivite cyclic group (G =Z,) of order v (i.e., |Gl=n).

Let g be a geverator: (= {49, 9., '3 both determived v a
n

]
preprocessing phage

Let H: G—= {04 be a hash fuvction (modelled as a random oracle).

Gen:

Choose at ravdom a v {4,.13, set sk = a and pk = o

evc(pkm):

Choose at random b in §,..m3. Let K =H(pk®).

Output (9°, Kewm).

Dec(sk, (uV)):

Compute K=H(1*) and output m=Kev

Correctuess:  For any pair (pk, sk) = (g*, a) and every msg m:

Dec(a, (4, H(gowm) = H(F™)e H(F™e W) = m l/



Performavce:

To encrypt: 2 expoventiations: P, Pkb.

To decrypt: 1 exponentiation: u™
Exponentiation is slow! (A few wmiliseconds on woderw processors.)

At first i+ seems like decryption is twice as fast.

Ilnaﬂ
=l

But g can be computed efficiently by precomputing i@‘} 3

: b
If we everypt often to the same pk, then computivg pk

can be dove efficiently as well (with the same precomputation).
Semantic Security:

For semawtic security, all we need to argue is that given pk=g™,
and given the first part of the ct 9°,

the symmetric key H(g‘“) is ind. from randowm:
(0%, 9°, H([F™) 2 (9™, 9", W)
This assumption is called Hash Diffie-Hellman (HDH).

I+t is strowger than the Computational Diffie-Hellman Assumption.

But is equivalent to it in the ROM (Random Oracle Wodel).



CCA security?

Nol (Given Ewc(pkm) it is easy to geverate Evc(pk, me ')

Iv the CCA game the adversary gets additional nformation: Decryption oracle.

Note:

There are variants of El-Gamal that are CLA secure under CDH

(Go to .75 for details!)



