Today: Public key encryption

Recall: Diffie-Hellman Key Exchange:

Let G a finite cyclic group of order n (i.e., |G|=n).

Cyclic means that it has a generator g

Eg. $G = \mathbb{Z}_p^*$ which is $\{1, \dots, p-1\}$ with mult. mod p

in which case |G|=n=p-1.

Let g be a generator of G: $G=\{g\}, g^2,...,g^n\}$

Choose at random a in {1,...,n},

$$\xrightarrow{A=g^a}$$

Choose at random b in {1,...,n},

$$K = g^{ab} = A^b = B^a$$

How do we choose a generator from Z. ?

The order of an element x in G is smallest $+ s.t. x^t = 1$

Theorem:

The order of each element divides the order of the group.

For $\mathbb{Z}_{\mathbf{P}}^*$: the order of each element g divides P-1.

Choose p to be a safe prime: p-1=2q, where q is a prime.

Thus, each element g in \mathbb{Z}_p^* is of order 1, 2, q, or 2q.

There are only 2 elements of order 1,2: 1 and p-1

(since degree 2 polynomial $f(x)=x^2$ has at most 2 roots).

The remaining p-3 elements are of order q or 2q=p-1,

half of the remaining are of order q and half are of order 2q:

Consider the function $f: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$ where $f(x) = x^2 \mod p$.

The image of this function is of size (p-1)/2,

since each element x in the image has exactly two roots

x and p-x.

The image is the set of all quadratic residues (by def),

and each element in the image is of order 1 or q.

There is only one element of order 1 and hence (p-3)/2 of order q.

Thus, there are (p-3)/2 of the elements that are not of the form x^2 and all these are generators (i.e. of order p-1).

To choose a generator of Z_p (where p=2q+1 is a safe prime)

choose a random g, and check that $g^8 \neq 1$ and that $g^2 \neq 1$.

If this is not the case try again.

Discrete Log Assumption:

Given a group G with generator g, it holds that given g

for a random x in $\{1,...,n\}$ where n=|G|.

it is hard to find x.

Namely, the function $f(x)=g^x$ is a one way function.

Computational Diffie-Hellman (CDH) Assumption:

Given ga, gb, it is hard to compute gab, except with negl probability.

A passive adv cannot guess K assuming CDH!

This naturally lends itself to public key encryption!

Definition:

A public key encryption scheme consists of three efficient (randomized) algorithms: Gen, Enc, Dec, with the following syntax:

- 1. Gen takes as input security parameter and outputs a pair of secret and public keys (sk,pk).
- 2. Enc takes as input a public key pk and a msg m (from the msg space) and outputs a ciphertext ct.
- 3. Dec takes as input a secret key sk and a ciphertext ct and outputs a message m (from the message space) or abort.

Correctness:

For every (sk,pk) generated according to Gen, and for every msg m (from the msg space),

Pr[Dec(sk, Enc(pk,m))=m]=1.

Note:

A public key encryption scheme is a digital analog of a locked box, where only the receiver has the key.

Applications of public key encryption:

1. Key-exchange:

Server sends a public key pk to browser.

Browser chooses random K and sends Enc(pk,K) to server.

Now the server share a symmetric key and use that for communication!

2. Secure email:

A user A want to encrypt an email to another user B.

If A has pk, then she can use it to send encrypted emails to B.

Security:

As in the symmetric key setting, we consider two flavors of security:

CPA (Chosen Plaintext Attack) security and

CCA (Chosen Ciphertext Attack) security.

CPA Security (a.k.a semantic security):

For every m and m' (from the msg space),

$$(pk, Enc(pk,m)) \cong (pk, Enc(pk,m'))$$

for a randomly chosen pk chosen according to Gen.

Note:

This definition is much simpler than CPA definition in the symmetric setting!

The reason is that in the public-key setting, the adversary can encrypt msgs on his own using pk!

CCA security:

Any efficient adv. wins in the following game only with prob. 1/2 + negligible:

Challenger

Generate (pk,sk)
by running Gen

Choose a random bit b,
let
$$ct_b = Enc(pk, m_b)$$

Only if $ct = /ct^*$
 ct
 c

Adv wins if b=b'

El-Gamal Encryption scheme:

Let G be a finite cyclic group $(G = \mathbb{Z}_p^*)$ of order n (i.e., |G| = n).

Let g be a generator: $G = \{g', g^2, ..., g^n\}$ both determined in a preprocessing phage

Let $H: G \longrightarrow \{0,1\}^*$ be a hash function (modelled as a random oracle).

Gen:

Choose at random a in $\{1,...,n\}$, set sk = a and $pk = g^{\alpha}$.

Enc(pk,m):

Choose at random b in $\{1,...,n\}$. Let $K = H(pk^b)$.

Output (gb, Kom).

Dec(sk, (u,v)):

Compute $K=H(u^{sk})$ and output $m=K\oplus V$

Correctness: For any pair (pk, sk) = (g^a, a) and every msg m:

$$\operatorname{Dec}(a, (g^b, H(g^{ab}) \oplus m) = H(g^{ba}) \oplus (H(g^{ab}) \oplus M) = m$$

Performance:

To encrypt: 2 exponentiations: gb, pk.

To decrypt: 1 exponentiation: usk

Exponentiation is slow! (A few miliseconds on modern processors.)

At first it seems like decryption is twice as fast.

But gb can be computed efficiently by precomputing {g2}; 1000

If we encrypt often to the same pk, then computing pk^b can be done efficiently as well (with the same precomputation).

Semantic Security:

For semantic security, all we need to argue is that given $pk=g^a$, and given the first part of the ct g^b , the symmetric key $H(g^{ab})$ is ind. from random:

$$(g^a, g^b, H(g^{ab})) \cong (g^a, g^b, U)$$

This assumption is called Hash Diffie-Hellman (HDH).

It is stronger than the Computational Diffie-Hellman Assumption.

But is equivalent to it in the ROM (Random Oracle Model).

CCA security?

No! Given Enc(pk,m) it is easy to generate $Enc(pk, m \oplus m')$

In the CCA game the adversary gets additional information: Decryption oracle.

Note:

There are variants of El-Gamal that are CCA secure under CDH

(Go to 6.875 for details!)