One-time security: \forall m, m' in M: $Enc(K,m) \stackrel{!}{=} Enc(K,m')$

where K is random in K

One-Time Pad: Enc(k,m)=kom

perfect security!

Today:

Many-time security

Pseudo-random functions

Construction

AES (Advanced Encryption Standard)

Definition:

Indistinguishabilty against Chosen Plaintext attacks

(Ind CPA, or CPA for short):

An encryption scheme (Enc, Dec) is CPA secure if for any $m_1, m_2, ..., m_4$ in M and $m_1', m_2', ..., m_4'$ in M

 $(\operatorname{Enc}(k,m_1),...\operatorname{Enc}(k,m_t)) \cong (\operatorname{Enc}(k,m_1'),...,\operatorname{Enc}(k,m_t'))$

computational indistinguishability

where k is random in \mathbf{K} .

Intuitively, computationally indistinguishable means indistinguishable in practice!

Definition: Two distribution ensembles $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ are computationally indistinguishable if for any polynomial time

distinguisher D and every n,

|Pr[D(a)=1] - Pr[D(b)=1]| = negl

where a is sampled from A_n , b is sampled from B_n .

Intuitively, neal means 0 in practice.

Definition: A function μ is negligible if for every constant c in \mathbb{N} there exists a constant n_c s.t. for every $n>n_c$ $\mu(n)< n^{-c}$

Remark: The definition of CPA security stated above is a simplified (and weaker) form of the actual definition. In the actual definition the messages can be chosen in an adaptive manner, and the definition is a "game based" definition

Definition: Indistinguishabilty against Chosen plaintext attacks (Ind CPA, or CPA for short):

An encryption scheme (Enc, Dec) is CPA secure if every efficient adversary Adv wins in the following game with probability at most 1/2+negligible:

Adv wins if and only if b'=b.

Construction of a CPA secure encryption

Suppose: There exists a keyed function F, such that for every $x_1, x_2,...,x_k$ in the domain, it holds that $F(K,x_1), F(k,x_2),...,F(k,x_k) \cong (U,U,...,U)$

Such a function is called a pseudo-random function (PRF).

A PRF is a function that generates (fake) randomness!

Theorem: There exists a PRF assuming the existence of a one-way function

Let $f:\{0,1\}^* \longrightarrow \{0,1\}^*$ be a function.

and setting y=f(u).

Definition: f is a <u>one-way function</u> if it is <u>easy</u> to compute but hard to invert.

Easy: There is a poly-time algorithm that on input x outputs f(x).

 $\frac{Hard:}{A}$ For any poly-time algorithm A there exists a negligible function μ s.t. for every n, $\Pr[A(y)=x \text{ s.t. } f(x)=y]=\mu^{(n)}$ where the probability is over y distributed by choosing a random u in $\{0,1\}^n$

In practice: Use AES as a PRF.

A CPA secure encryption scheme using a PRF F:

$$Enc(k,m;r) = (r, meF(k,r))$$

$$Dec(k,(r,c)) = c \bullet F(k,r)$$

The security follows from the security of the PRF and the security of the one-time pad.