Today: Encryption

One-time security

One-time pad

Many-time security.

The assumption you should make:

Anyone can see the packets you are sending, everything is completely public!

Examples: HTTP, TCPIP, Email,...

TCP dump: Dumps all the traffic sent on this WIFI.

Examples where encryption is used: HTTPS, messaging systems

Encryption scheme: Syntax

An encrytpion scheme consists of a key space K, a message space M, a ciphertext space C, and two algorithms:

Enc:  $K \times K \longrightarrow C$ 

Dec:  $H * C \longrightarrow \mathcal{H}$ 

Correctness: For every m in M, and every k in K,

Dec(k, Enc(k,m))=m

Security: For every m, m' in M,

$$Enc(k,m) \equiv Enc(k,m')$$

where k is uniformly distributed in K

Construction: One-Time Pad

Invented and patented by Gilbert Vernam 1917.

Analyzed and was proved secure by Shannon in 1945,

but remained classified until 1949.

$$M = K = C = \{0.1\}$$

## Correctness:

 $Dec(k,Enc(k,m))=Dec(k,k \bullet m)=k \bullet (k \bullet m)=m$ 

Security: Fix any m in

If k is a random in {0,13 then

Enc(k,m)= $k \oplus m$  is random in  $\{0,1\}^n$ :

 $Pr[Enc(k,m)=c]=Pr[k \oplus m=c]=Pr[k=c \oplus m]=2^{-n} /$ 

One-time pad seems great, offers perfect security!

So, why not use one-time pad??

One-time pad only offers one-time securitiy!

Note: Even though our definition of security seems to be so strong, it is not strong enough!

For example: Encryption of D reveals the secret key and then the key can no longer be used!

This seems like a contrived example, but is not as contrived as it seems. Often the beginning of the messages is known (say contains only meta-data). But then another message may contain secret information in the beginning.

## New definition: ??

For any messages  $m_1$ ,  $m_2$ , ..., $m_t$  in M, and messages  $m_1'$ ,  $m_2'$ ,..., $m_t'$  in M Enc(k, $m_1$ ), Enc(k, $m_2$ ),...,Enc(k, $m_t$ )  $\equiv$  Enc(k, $m_1'$ ), Enc(k, $m_2'$ ),...,Enc(k, $m_t'$ ) Impossible!

Intuitively,  $Enc(k,m_1)$ ,..., $Enc(k,m_2)$  gives too much information about k. Note: A many-time secure scheme cannot be deterministic!

For any distinct m and m',

(Enc(k,m),Enc(k,m)) is distinguishable from (Enc(k,m),Enc(k,m'))

Conclusion: A many-time secure encryption scheme must be randomized (or at least stateful)

But the impossibility remains...

Suppose we can generate as much randomness as we want

from k (like generating randomness "out of thin air".)

Then we can use the one-time pad, while each time using

newly generated randomness from k.

Seems like magic, right?

This is exactly what we will do! Generate randomness

"out-of-thin air"

## assuming hardness...

Namely, we will take a single key k, and use it to generate as

many keys as we want: F(k,1), F(k,2),...,F(k,t)

such that these keys are indistinguishable from random for a

computationally bounded adversary!

Computationally bounded = polynomial time

Intuitively, computationally bounded means real world adversaries.

Definition: Indistinguishabilty against Chosen Plaintext attacks (Ind CPA, or CPA for short):

An encryption scheme (Enc, Dec) is CPA secure if for any  $m_1, m_2, ..., m_{t}$  in M and  $m_1', m_2', ..., m_{t}'$  in M

where k is random in {0,1}?

Intuitively, computationally indistinguishable means indistinguishable in practice!