
Security Analysis of Browser Auto-fill and Password
Managers

Sharon Lin
sharonl@mit.edu

Shendo Maccow
cmaccow@mit.edu

Mayukha Vadari
mvadari@mit.edu

Avital Baral
abaral@mit.edu

May 11, 2020

1 Introduction

Auto-fill for passwords and other sensitive information have become a ubiquitous feature
of modern browsers. This feature usually prompts the user to save their credentials when
they visit a particular site. The browser will then fill in the fields with their credentials
when they revisit, saving them time. They also allow for password storage and manage-
ment, saving the user from having to memorize or otherwise recall the many passwords
they use online without needing to repeat passwords. For security-minded people, im-
plementations of this feature intuitively feel dangerous to opt into, given that the ease of a
user retrieving their password may translate to an ease for an attacker to retrieve their pass-
words, yet on the other hand password managers such as LastPass are touted as safe and
convenient tools for managing the countless username/password pairs we are prompted
to create and maintain online. [1]

This project surveys the status of known vulnerability and security exploits facing pass-
word managers for the Chrome and Firefox browsers, as well as password manager appli-
cations like LastPass, comparing and contrasting their approach to security with that of the
browser auto-fill features. We first explore the official security policies and assumptions
underlying the browser auto-fill features in Google Chrome and Mozilla Firefox, followed
by collecting and testing a set of known exploits of the Chrome and Firefox browser auto-
fill feature and the LastPass password management application. Finally, we’ll conclude
with a series of observations and recommendations on the use of browser auto-fill features
and password managers. [2]

2 Platform Overview

2.1 Chrome

Chrome’s built-in password manager tracks login secrets on all visited sites. When users
log into a site, they are prompted to save their credentials for later use. The next time
they visit the site, their stored credentials will already be filled in. These credentials can be
synced across different devices, as long as the user is logged into their Google account on
Chrome. The password manager also checks reputations of new websites that users visit to
ensure that they are legitimate, and checks whether your passwords have been involved
in any breaches. Users can view their usernames in plaintext, and their passwords in
plaintext if they enter their OS password.

2.2 Firefox

Firefox has an internal password manager called Lockwise that allows users to store cre-
dentials associated with their Mozilla account. If they log in on different machines or
download the app and log in, they can access their passwords even if they are not on
the browser on their home machine. The application allows them to copy and paste their
usernames and passwords in plaintext.

1

mailto:sharonl@mit.edu
mailto:cmaccow@mit.edu
mailto:mvadari@mit.edu
mailto:abaral@mit.edu


2.3 LastPass

LastPass is an application that allows users to store passwords and other confidential in-
formation, using a username and master password. For browser applications, under de-
fault settings, a user signed into LastPass is able to view their passwords in plaintext in a
browser. They can also view their credentials on the LastPass mobile app.

3 Security Policy

3.1 Objectives

The purpose of this section is to document the use and operation of browser-based auto-
fill and password managers by defining the users, roles, access levels, and other policies
surrounding the security of the products.

As for the operation of the application, the expected usage is that the user would add
credentials for each site they log into. They would then be able to log in again the next
time they return without needing to manually recall the username and password for the
site. The frequency of the authentication may be user-determined (the fields can be auto-
matically filled or require a master password to access the database with the passwords for
filling in the fields), but the application should ideally clarify to the user the risks involved
in staying logged in to the master application for extended periods of time.

The user should only have access to their own credentials, and should be the only per-
son with access to their credentials. If another user is using their computer, there should be
a way to disable the application and prevent other users from accessing their credentials.

3.2 Definitions

A password manager allows users to manage their usernames and passwords for different
sites. This can be something that is natively a part of a browser, or a separate application.

Auto-fill is a feature where a password manager or something similar automatically
fills in credentials or other stored information when a user is logging in or entering in
other information online, such as credit card details or addresses.

3.3 User Roles and Access Levels

The access controls of the applications should ensure confidentiality of the user, data in-
tegrity of usernames and passwords, and authentication for users to access their data.

For both password managers and auto-fill features, users should be able to view, add,
and modify usernames and passwords after authentication. They should not be able to
view, add, or modify other users’ usernames and passwords or their own usernames and
passwords without authentication. The limits of the authentication should ideally be in-
formation theoretic, and computational at the very least.

In addition, the company behind the password manager should not be able to view,
add or modify any user’s passwords, and ideally usernames as well.

3.4 Authentication

Both the auto-fill and password manager should be required to authenticate a user be-
fore they access any of their usernames or passwords. This includes instances where the
browser may be auto-filling a field on behalf of the user; the browser should be required
to authenticate the user before revealing their sensitive data onscreen. It should not reveal
the information that it is authenticating to any parties.

2



3.5 Information Gathering and Usage

Both apps should not be gathering any information about their users. If any aspects of
their security policy are changed, the app should notify all users. Additionally, the app
should require that users read and agree to a statement about the usage and gathering of
their data.

4 Security Analysis

4.1 Chrome

4.1.1 Security Policy Assumptions

The security engineers for Chrome made several assumptions about the security policy
of their application. In particular, according to Justin Schuh, the ”only strong permission
boundary for your password storage is the OS user account” [3] [4]. Thus, Chrome uses
encrypted storage provided by the OS to protect passwords for a locked account, while as-
suming that boundaries within the OS user account aren’t reliable. Contrasting with other
systems, Chrome believes that using a master password would provide users with a false
sense of security and encourage risky behavior. [4] Thus, only OS user access protection is
used for the primary protection of passwords.

4.1.2 Security Implementation

Internally, Chrome saves the sign-on secrets in an internal database known as ’Web data’ in
the user profile folder, or ’Login Data’ for newer version of Chrome. The SQLite database
contains tables storing different data including auto-complete, search keyword, i37logins,
and login secrets. Most of the login table contains information about sign-on secrets in-
cluding website URL, username, and password. Apart from the password, which is stored
in encrypted format, the other information is stored in plaintext. [5]

When syncing across the Cloud, Chrome will by default use the Google Account pass-
word, but there is the option to use a special syncing passphrase. When syncing locally,
Chrome will attempt to use whatever local password vault exists. [6]

For Windows, Chrome uses Windows Data Protection API and the CryptProtectData
function, built into Windows, to encrypt passwords. [4] This is a secure function imple-
mented using a triple-DES algorithm, creating user-specific keys to encrypt the data. It can
also be decrypted as long as the user is logged into the same account that encrypted it. The
CryptUnprotectData is its counterpart function, which decrypts the data. [7]

For Mac and Linux, the encryption scheme is AES-128 CBC with a constant salt and
constant iteration. The decryption key is a PBKDF2 key generated with a salt b’saltysalt’,
with key length 16, an IV of 16 bytes of space. On the Mac, the password is in the Keychain
under Chrome Safe Storage - the password can be accessed using the excellent Keyring
package or with bash using ‘security find-generic-password -w -s ”Chrome Safe Storage”.
On Linux, the password is peanuts and the number of iterations is 1. [5]

4.1.2.1 Communication with Google For the purpose of this section, Google refers to
the company and Chrome refers to anything Chrome stores locally on the user’s machine.

Some information about any form the user fills out, such as the fields and the form
structure, is sent to Google, to help Google improve their auto-fill feature. [6]

Google helps users identify when their information has been a part of a data breach.
When Google discovers a username-password pair in a data breach, they store a hashed
and encrypted copy of the information. When a user signs into a website, Chrome will
send to Google a hashed copy of their username and password, encrypting using a key

3



known only to Chrome and not to Google. To determine if a user’s username and pass-
word has appeared in a breach, Google uses a technique called private set intersection
and blinding, which allows Google to compare the user’s encrypted username and pass-
word to its collection of encrypted usernames and passwords. Chrome also sends a 3-byte
SHA256 prefix of the username to make computation more efficient. [8]

4.1.3 Successful Attacks

For Mac and Linux, we were able to import the Crypto.Cipher.AES module to use for de-
crypting the ciphertext associated with the file containing the passwords. Since the key is
stored in the database file, we are able to pass this key, the IV (16 spaces), and decrypt the
CBC Mode AES ciphertext. This does require being logged into the same Keyring account
that encrypted the data.

For Windows, we similarly used the win32crypt module, passing in the encrypted ci-
phertext to decode. This was done using the open-source Lazagne Project. It required no
logins, and could even be performed from a different user account on the same computer,
provided it is launched with admin privileges. [9]

4.1.4 Unsuccessful Attacks

One attack was unsuccessful because downloading the Executable that supposedly would
find the passwords was prohibited by the Windows operation system. This helps validate
the security policy that the operating system will protect Chrome.

4.2 Firefox

4.2.1 Security Policy Assumptions

It is assumed that a user who loses their master password is compromised. However, we
want to see if there are methods for breaching security without use of the master password.

4.2.2 Security Implementation

In the past, Firefox has made several significant changes in the way that their password
management system is implemented. Users saving browser passwords without a master
password would have been theoretically protected from attacked with access to their com-
puter, if not for the key to the ‘logins.json‘ file being found in the ‘key3.db‘ file. The master
password is hashed by adding a salt and applying the SHA-1 algorithm. When the user
enters the master password, the software compares the hash with the master password’s
hash. Apart from the weakness of SHA-1, Firefox only had one iteration of the hash, per-
mitting brute force attacks. [10] [11]

Figure 1: This shows how the databases that are used for storing the global salt, per entry
salt, and encrypted key, as well as the encrypted credentials for Firefox.

4



Figure 2: This shows how Firefox obtains a master key from a master password using
3DES-CBC and the process for using the master key to encrypt the login credentials.

Currently, passwords are accessed through the Firefox Lockwise application at
‘about:logins‘ and are viewable in plaintext so long as the user is signed into their master
account through the browser. Lockwise doesn’t keep the master password, however.

Address, email, and telephone auto-fill data is available through ‘auto-fill-profiles.json‘
located in a separate folder from the Firefox application. Likewise, password data is avail-
able at ‘logins.json‘ (encrypted with 3DES) and ‘key4.db‘. In the key file, the global salt is
stored in ‘item‘ and the entry salt and encrypted key in ‘item2‘ (in DER encoding). The
master key is encrypted using 3DES-CBC with a key and IV derived from the master
password, global salt, and per entry salt. The encryption of usernames and passwords
is also done using 3DES-CBC with an IV in the metadata of each item. The best attack
on this database would be a brute force on the master password. The password’s entropy
is bounded to 112 bits by 3DEX, thus making the algorithm weak by modern standards
(though it would computationally take several decades to brute-force the key). [12]

4.2.3 Successful Attacks

We made use of the Network Security Services (NSS) modules, an open source software
conforming to PKCS#11 standard, providing hash functions, big number calculations, and
cryptographic algorithms. [13]

For Mac, we were able to use the NSS library to decrypt the base64 entries in the
database, taken from the credentials stored in the Firefox profile in .csv format. We check
for a master password, although many profiles are stored without protection from a mas-
ter password, thus allowing anyone with access to the profile to decrypt the credentials.

For Windows, we were able to use the Python ctypes library for accessing DLLs, includ-
ing the ’nss3.dll’. We can then use the PK11SDR Decrypt function for decrypted entries in
the passwords.csv database found with the Mozilla profiles. For databases without master
passwords set, the decryption can automatically occur without the need for brute force.
[14]

For older versions of Firefox, we also used John the Ripper to crack the key3.db mas-
ter password in the case that the master password was set. The login data is stored in
signons.sqlite with base64 encoding, 3DES in CBC mode encryption, and standard block
padding. The decryption key is kept in the key3.db file, with entries encrypted by the mas-
ter password. For verifying the master password, the password check entry is decrypted
and compared against the fixed string ”check-password\\x00 \\xoo”. From the database
file, the global-salt (which is stored in plaintext) and the data in the file are passed to john
for cracking. [15]

5



4.3 LastPass

4.3.1 Security Policy Assumptions

Any user who has access to the username and master password is the owner of the ac-
count. LastPass is designed so that any insecurity in either the transfer or storage of data
is harmless because all data transferred or stored is encrypted. LastPass also believes that
AES-256, PBKDF2, and SHA-256, are secure as their encryption model uses those algo-
rithms. [16]

4.3.2 Security Implementation

Figure 3: This shows how LastPass encrypts credentials on its platform.[16]

4.3.2.1 Security Policy

Last Pass’ promise of security is largely attributed to its local-only encryption model,
also known as “host-proof hosting”. Local-only encryption means that only the user will
be able to decrypt and use the data that they are storing within last pass. This guarantees
the security of both data being sent to last pass, and the security of data stored in last pass
databases. Because only encrypted data is being sent to last pass, any data that is inter-
cepted in transit to last pass will already be encrypted, and any data that can be stolen
from last pass databases will already be encrypted. [16]

4.3.2.2 Encryption Details

LastPass uses PBKDF2 to generate user specific encryption keys. PBKDF2 takes in
5 variables: a hash function, a password, a salt, a number of iterations to run through,
and the desired output key length. In LastPass’ version SHA-256 is used as the hash
function because, although it is a slower hashing algorithm, it provides more protection
against brute force attacks. LastPass also defaults to 100,100 iterations, although this can

6



be changed by the user, and a key length of 256. The Password is the user’s master pass-
word and the salt is the user’s username.

A user’s data is encrypted by using the Advanced Encryption Standard (AES) in Cipher
Block Chaining (CBC) mode with the encryption key generated from their username and
master password. This data is then paired with an authentication hash which is generated
by taking the encryption key and running one more round of PBKDF2. The authentication
hash and encrypted data are then both sent to last pass via TLS 1.2 in order to mitigate the
risks of downgrade attacks and misconfiguration. Content Security Policy headers pro-
vide further protection from injection attacks, such as cross-site scripting.

Once the user’s data has been received by LastPass, the authentication hash that was
sent is then run through an additional 100,100 rounds of PBKDF2 in order to ensure that
both the data that is stored by a user locally and the data that is stored online in LastPass
servers are protected. If the output after these final rounds of hashing matches the stored
authentication hash for the user, then the user’s vault unlocked and is updated with the
encrypted data sent by the user, or sent to the user if they were requesting access to their
vault rather than updating it. [16]

5 Recommendations

Based on our survey of the current relative security of these features, we wanted to rec-
ommend some changes to the way users interact with the Chrome and Firefox browser
auto-fill features.

In general, due to the more secure encryption scheme used in LastPass’s platform, their
password manager is preferable to relying on either of the browser based auto-fill features.
However, using a password manager at all is still preferable to not having any password
manager.

5.1 Chrome

Although this has already been recommended numerous times, turning auto-complete off
is necessary for preventing forms on websites not associated with a particular set of cre-
dentials from accessing those credentials. This can very easily lead to phishing attacks and
thus should be avoided.

In addition, it is recommended that the Keyring account used for encrypting the Chrome
passwords is not always logged on, and that it is protected with a strong password to pre-
vent brute force attacks from accessing the credentials stored on the Keyring.

5.2 Firefox

When storing passwords on Firefox, it is recommended that the user uses a Master Pass-
word to provide an additional layer of security to the stored credentials.

5.3 LastPass

When storing passwords on LastPass, it is recommended to turn on the option requiring
LastPass to prompt the user with the master password every time the user wishes to use
credentials. This prevents someone from obtaining the user’s usernames and passwords
even if they obtain access to the machine, and also helps the user remember their master
password better.

7



6 Conclusion

In this project, we examined the security policies and guarantees of the Chrome and Firefox
browser password auto-fill features (for the latest stable versions of Chrome and Firefox,
namely 81.0.4044 for Chrome and 75.0 for Firefox at the time of writing) as well as those
of the password manager LastPass, comparing and contrasting the security assumptions
made by the developers of these password management systems and the implementa-
tions of the systems based on these assumptions. We tested these systems on Mac (version
10.14.5), Linux (Ubuntu 20.04 LTS), and Windows 10 operating systems.

While Chrome’s development team considers OS security the only actual strong per-
mission boundary for password storage, they have still implemented password encryp-
tion, making use of the Keychain and the Windows Data Protection API for Mac/Linux
and Windows. Meanwhile, Firefox, considers its master password the strong permission
boundary for password storage and LastPass likewise utilizes its username and master
password to assert the authenticity of the owner of an account.

We catalogued some successful as well as unsuccessful breaches of the Chrome and
Firefox features on Mac, Linux, and Windows operating systems. With Chrome, we were
able to use an encryption and decryption module to decrypt the ciphertext associated with
the file containing the passwords. With Firefox, we were similarly about to use the NSS
modules present on all three operating systems to decrypt the master key and login data,
as well as use John the Ripper to crack weaker master passwords.

Finally, we issue recommendations for users of all three applications, specifically rec-
ommending that auto-complete features be disabled, a master password used for securing
passwords if the option is available, and passwords managers be used if one is not already
securing their credentials in an encrypted manager. We highly recommend that users use
LastPass over the browser-based password managers, as LastPass has a much more secure
encryption scheme.

7 Acknowledgements

We would like to thank the Prof. Ron Rivest and Prof. Yael Kalai, as well as the 6.857 TAs
Adrian, Christos, and Jacob for their help in refining the scope and topic of the project.

References

[1] M. Pinola, “Which Password Manager Is The Most Secure?,” LifeHacker, 2012.

[2] B. Strine, “Is saving passwords in Chrome as safe as using LastPass if you leave it
signed in?,” Stack Exchange, 2013.

[3] J. Yarow, “Google Has A Major Security Flaw In Chrome That Gives People Easy
Access To Your Passwords,” Business Insider, 2013.

[4] tylerl, “Is saving passwords in Chrome as safe as using LastPass if you leave it signed
in?,” Stack Exchange, 2017.

[5] P. Chheda, “Chrome Password Grabber,” GitHub, 2019.

[6] “Google Chrome Privacy Whitepaper,” Google Chrome, 2020.

[7] darkArp, “Chromepass - Hacking Chrome Saved Passwords,” GitHub, 2019.

[8] P. e. a. Nepper, “Better password protections in Chrome - How it works,” Google Se-
curity Blog, 2019.

8



[9] AlessandroZ, “The LaZagne Project,” GitHub, 2020.

[10] A. Hersean, “How are Mozilla Firefox passwords encrypted?,” Stack Exchange, 2019.

[11] R. Alves, “Firefox Decrypt,” GitHub, 2019.

[12] L. Abraham, “ffpass - Import and Export passwords for Firefox Quantum,” GitHub,
2019.

[13] “An Overview of NSS Internals,” MDN Web Docs, 2019.

[14] A. Sharma, “Firefox Passwords,” GitHub, 2019.

[15] Skactor, “John the Ripper,” GitHub, 2019.

[16] LastPass, “LastPass Technical Whitepaper,” LastPass Enterprise, 2018.

9


	Introduction
	Platform Overview
	Chrome
	Firefox
	LastPass

	Security Policy
	Objectives
	Definitions
	User Roles and Access Levels
	Authentication
	Information Gathering and Usage

	Security Analysis
	Chrome
	Security Policy Assumptions
	Security Implementation
	Communication with Google

	Successful Attacks
	Unsuccessful Attacks

	Firefox
	Security Policy Assumptions
	Security Implementation
	Successful Attacks

	LastPass
	Security Policy Assumptions
	Security Implementation
	
	



	Recommendations
	Chrome
	Firefox
	LastPass

	Conclusion
	Acknowledgements

