A Survey of Novel Countermeasures Against Mobile Lock Screen Keystroke
Inference Attacks

Bill Wu

billwu@mit.edu

Deepankar Gupta
deepgl4@mit.edu

Abstract

Mobile device security is a major research focus due to
the widespread use of smartphones, tablets, and similar de-
vices. While many applications exist to protect user data,
their value is eliminated when an attacker gains informa-
tion about user passwords. In this study, we survey four ex-
ternal attacks where attackers gain information about user
passwords inputted on soft keyboards through keystroke in-
ference. The attacks analyze external cues such as tablet
motion and gaze to learn about the victims’ passwords. We
then propose novel countermeasures to the attacks and an-
alyze their impacts on user experience and security.

1. Introduction

When one thinks of mobile security, usually any of
the following come to mind (depending on the type of
mobile system): file and disk encryption, password man-
agers, Google’s Play Protect, network firewalls, sand-
boxed apps, malware protection, authentication, and much
more [SSCT08] [MK16]| [GVS20] [AND20]. However, a
phone’s contents are protected by a user-inputted password
that can be as simple as a 4-digit PIN or an Android lock
pattern. If one’s phone password is exposed, most of the
security efforts listed above become utterly useless. If an
attacker were to have access to a victim’s unlocked phone,
they would not only have access to texts, calls, and per-
sonal media, but also access (through cookies) to email,
social media, internet accounts, and much more. What is
especially worrying is the ability to reset account details
for sites that require two-factor authentication, since the at-
tacker would possess full access to the victim’s physical
“trusted device”. Along with publicly available informa-
tion like the last 4 digits of the victim’s SSN, their address,
and other personal information, it would be entirely possi-
ble for an adversary to obtain the victim’s bank credentials,
to blackmail the victim, or to cause any other undesirable
outcome. These threats set the motivation for the rest of the
ideas in this paper.

With the advent of biometric identification and Apple

Eric Jiang Rishi Sundaresan

jiange@mit.edu rishisun@mit.edu

Face ID, mobile devices are increasingly more resistant to
lock screen password leaks. However, many devices still
use a phone password inputted via a “soft keyboard”, which
usually consists of a 4-digit or 6-digit PIN, a geometric pat-
tern lock, or an alphabetical password entered via a tradi-
tional QWERTY keyboard. These input methods all inher-
ently require a user to tap or swipe in a consistent pattern,
which opens an entire class of attacks called keystroke infer-
ence attacks. These attacks aim to infer keystrokes through
information learned from various side channels or by di-
rectly observation. The attacks pose a significant threat to
mobile users since in an insecure public environment, if a
victim were to unlock their mobile device, an attacker could
steal the user’s password and launch any number of further
attacks mentioned before, compromising mobile security
and user privacy.

In this paper, we present countermeasures that aim
to mitigate keystroke inference attacks on mobile lock
screen passwords, from a variety of different angles that
have already been explored in the existing literature on
touchscreen device security. The structure of the following
sections can be summarized as follows:

1. We introduce the background for lock screen pass-
words in order to better understand potential vulner-
abilities.

2. We summarize four different keystroke inference at-
tacks and for each, we propose countermeasures and
analyze their effectiveness and practicality.

3. We suggest potential applications for the proposed
countermeasures, discuss other ideas that we consid-
ered throughout the research process, and explore fu-
ture areas of work.

2. Background
2.1. System Functionality

Although mobile devices differ in many ways, including
but not limited to the company that produced them and the

operating system they run, the lock screen password system
that they use follows the same template. The user of the
mobile device can set their lockscreen to be protected by ei-
ther an alphanumeric password, a PIN number, or a pattern-
based password [HLE16]. Not all mobile devices feature all
of these password types. Once the user chooses a password
type and an appropriate password, the lock screen password
system functions as follows from the user’s perspective:

1. The user swipes to access password input screen. This
screen shows a prompt (a request for a string of char-
acters, a request for a PIN number, or a request for a
pattern on a grid of points or circles).

2. The user responds to the prompt and enters his or her
password attempt. In the case of alphanumeric pass-
words or PIN numbers, an appropriate soft keyboard
appears. In a gridlock setting, the grid itself can be
thought of as the soft keyboard.

3. The screen responds to the attempt. If password is cor-
rect, the phone unlocks and reveals the device’s home
screen. If the password is incorrect, the user is given
an indication of it.

4. In many modern mobile devices, if the user makes
multiple incorrect attempts, he or she will be prevented
from entering another password for a variable amount
of time.

2.2. Keystrokes

When the user inputs a password in any of the three
formats through a soft keyboard, a single depression on
the keyboard is referred to as a keystroke. To be more
specific, for an alphanumeric password, the action of a user
pressing on the specific region on the soft keyboard to input
a single character of the password would be considered
a keystroke. A similar definition holds for PIN number
passwords. In the case of a pattern-based password, the
grid can be viewed as a soft keyboard. The keystrokes in
the grid are entered via swiping on the soft keyboard grid.
With this context, each swipe on the grid can be viewed as
a sequence of keystrokes.

3. Plausible Attacks and Countermeasures

As discussed in the previous section, the input of a
password to unlock a mobile device relies on a series of
keystrokes on a soft keyboard. If an adversary were to be
able to determine the keystrokes that a mobile device user
made to input his or her password, then the adversary would
be able to guess the user’s password with decent probability,
perhaps even being able to reconstruct the correct password.

Many recent attacks take advantage of this notion and are
aptly dubbed keystroke-inference attacks. In this section,
we cover four keystroke-inference attacks, spanning three
types: motion-based, wifi-based, and video-based. For each
attack, we will give an overview of the attack’s pipeline. We
will then follow up with our proposed countermeasures for
dealing with such attacks, as well as an analysis regarding
the strengths and drawbacks of our proposed countermea-
sures.

3.1. Tablet Motion Based Attack: VISIBLE
3.1.1 Attack Description

Visible is an external attack where the attacker attempts to
gain information about the victim’s keystrokes in tablets
[SICT16b]. The setup is as follows:

The user is typing on an iPad/Tablet, and the attacker is
positioned across from the victim such that the attacker is
seeing the back of the tablet. Using a high-resolution cam-
era or camcorder, the attacker videotapes the back of the
tablet as the victim is pressing keys on a soft keyboard. The
attacker also notes elements of the scene (distances between
the camera and tablet, angle offset, etc.). This setup is de-
tailed in E} To get this information, the attacker can also
have another camera taking pictures of the scene at a differ-
ent angle.

After videotaping the process, the attacker later recon-
structs the scene (needing the same tablet model to do so).
The attacker then experiments with how pressing different
keys look and the respective optical flow that they tablet mo-
tion causes in video, eventually building a model to predict
the keystroke from the tablet motion. This model is then
applied to infer keystrokes from the video of the victim.

VISIBLE’s average accuracy of predicting a single
key is 36.2%, with the correct key being in the one-hop
neighbor of the prediction 83.6% of the time. This indicates
that the attack does an exceptional job of gaining regional
information about keystrokes.

3.1.2 Countermeasure Proposal

A countermeasure for this attack would ideally introduce
enough noise into tablet motion readings such that the re-
sulting posterior distribution over the key pressed is uni-
form. Although the countermeasure may not be able to ac-
complish this precisely, the countermeasure needs to intro-
duce enough noise such that it is computationally infeasible
for the attacker to determine the keystrokes on the soft key-
board.
There are two ways we can accomplish this:

1. Randomize the positioning of letters on the soft key-
board. The attack relies on knowing the locations of

Figure 1. VISIBLE attack setup. Two video cameras are taking
a video of the backside of the table as a user inputs keystrokes.

Picture taken from [SIC™ 16al]

each letter beforehand, so this process would prevent
the attack completely.

2. Introduce tablet vibrations/motions at every pressed
key. These vibrations will add adversarial noise to
models that attackers use to predict keystroke from
motion.

3.1.3 Countermeasure Analysis

Countermeasure 1 is extremely effective in preventing this
attack (it is also effective against most keystroke attacks),
but it does degrade the user experience. Users will spend
a lot of time typing their passwords since they will have to
look at the keyboard and find each letter they press. Many
users may not enjoy the product, and it is unclear whether
this tradeoff of usability for security is worth it for many
users.

Countermeasure 2 does not have as much of a usability
problem. However, the amount of motion necessary to in-
troduce significant noise in models will most likely hinder
the user experience and make the tablet harder to hold. This
amount of motion can be introduced into the tablet physi-
cally, as many methods of tablet feedback motion exist that
can be harnessed to create motion.

3.2. Wifi-Based External Attack: WindTalker
3.2.1 Attack Description

There are several different wifi-based attacks that target
passwords and other sensitive inputs on mobile devices, but
many of them follow the same basic pipeline. As such, we
will use WindTalker as a representative example of a wifi-
based attack (workflow detailed in[2).

WindTalker is a wifi-based attack explored in
LML™"16]. The premise of the attack begins with
the attacker setting up a rogue WiFi hotspot, which the
victim connects to obtain free WiFi. Once the victim con-
nects, the adversary can log information known as channel
state information (CSI) from the communication channel
between the victim’s device and the rogue hotspot. After
connecting to the rogue hotspot, the victim’s keystrokes
can cause fluctuations in the CSI [ALWSI13]. These
fluctuations do occur as the victim unlock the screens of
their mobile devices, and they become the basis for the
adversary’s keystroke inference attack.

CSl-collection
module

Victim
connects to
hotspot

Data
Processing

Keystroke
Prediction

Sensitive
Window Input
Recognition

Figure 2. Attack pipeline for WindTaker, adapted from Figure 4
in [LML"16]]. Note that other wifi-based attacks will follow a
similar sequence of steps.

Once the adversary collects CSI data, he or she can pin-
point what points in the time series correspond to the user
inputting sensitive input. Once these sensitive points in
time have been identified, the adversary cleans the data
through noise removal via a directional antenna on the
hotspot source and then dimensionality reduction through
low-pass filtering. Finally, the filtered data is passed
through a machine-learning algorithm that determines pos-
sible keystrokes and ranks them by likelihood of being the
victim’s password.

Li and his team tested this attack on XiaoMi devices
and Samsung devices [LMLT 16]]. On XiaoMi devices, they
achieved a 1-digit recovery rate of 79% while in Samsung
devices, they observed a 64% recovery rate, both of which
demonstrate how much of a threat the WindTalker attack
can be.

3.2.2 Countermeasure Proposal

Wifi-based attacks seem to be based on running machine
learning models on CSI data. It should follow that these

methods will perform poorly if we can remove the vulnera-
bilities being exploited by such attacks in the data.

According to [ALWS13]], keystrokes lead to fluctuations
that are carried in CSI values for all subcarriers between the
transmitter and the receiver. In particular, the hand move-
ments that produce the keystrokes lead to changes in exist-
ing multipath signals and to the creation of new multipath
signals that constructively and destructively interfere with
each other, thereby causing changes in the CSI values that
are built off of them. These moments are detected by the
sensitive input window detection portion of wifi-based at-
tacks such as WindTalker and are crucial to the success of
the attack. One way to cripple this module would be to
induce the same kinds of CSI fluctuations during times of
sensitive input during other times as well.

We can accomplish this by creating a protocol that peri-
odically prompts users to enter password-like codes when-
ever they are connecting public wifi servers, or servers dif-
ferent from the ones they regularly use. In a given mobile
device, every set amount of time, the user would be brought
to a lock screen that displays a password of the same type
that the user has chosen to lock his or her phone, which the
user is prompted to copy. In doing so, the same fluctuations
should be produced in the CSI that make the user vulnerable
to a wifi-based attack in the first place. The user would be
able to choose how often they wish to see such a prompt to
deter potential attackers. This method should give several
dummy windows for the sensitive input window detection
modules to detect in a wifi-based attack, camouflaging the
actual password input window. While the attack can infer
keystrokes for all such windows, it should be difficult for
the attacker to determine which set of inferred keystrokes is
the victim’s password.

3.2.3 Countermeasure Analysis

Our proposed countermeasure’s biggest strengths are ease
of implementation and lack of modification to CSI. Other
works, such as [YCWY20] and [THCS14] offer protocols
for securing CSI. However, in doing so, they modify the
rules that mobile devices globally follow when connected
to wifi. In particular, any mobile device that follows these
”secure CSI” protocols end up securing CSI not just from
attackers but also from parties who legally use it and need it.
The countermeasure suggested above does not tamper CSI-
data but simply fabricates the data and does not interfere
with any services or processes that are supposed to use CSI.

An obvious drawback is inconvenience for users. They
would have a scheduled interruption in whatever tasks they
would be completing on their mobile devices, which makes
our approach less appealing. However, the user would be
given the choice of how often they have the dummy pass-
word prompts appear. Placing this choice in the hands of

mobile device users will allow for them to choose a value
that matches their perceived level of danger. We would,
however, only offer a handful of choices that reflect our per-
ceived level of risk that a user experiences when seeking out
public wifi for his or her mobile device to connect to. This
compromise should offset some frustration by giving users
some choice over how they are being secured, should they
choose to use our protocol.

It should be noted that our dummy password prompts
appear to share some of the same paradigms as Captcha, a
layer of security that deters bots from using online services
[Raj17]. Since our dummy password prompts do require
the password being displayed to be replicated by the user,
they have the added bonus of hindering any unintended bot
processes that may be running on the user’s device as well.

3.3. PIN Skimmer and Spy Camera
3.3.1 Attack Description

There are two video based attacks that involve sensors that
will be included in the video based attacks. The first of
which is called PIN Skimmer. The idea behind PIN Skim-
mer is that it is a side-channel attack that utilizes a mobile
phone’s video camera and microphone to infer number-only
soft keyboard PINs on a smartphone. Thus, this kind of at-
tack is mainly used for phone lock screen passwords that
use the traditional 10 digit keypad. The microphone is used
to let the attacker know when the touch occurs and the cam-
era is used to estimate the orientation of the smartphone. By
using this orientation, the attacker is able to determine the
position of the digit that is tapped [SA13l]. The results of
this attack showed that 30% of PINs were guessed after 2
attempts and 50% of PINs were guessed after 5 attempts.

The other video based attack that we will consider is Spy
Camera; its workflow is detailed in[3] Spy Camera is a tech-
nique in which the attacker utilizes a mobile phone’s cam-
era to secretly take pictures and or record videos, which are
then sent to the attack when WiFi is available. The way that
the attack is able to hijack the mobile phone’s camera is if
the user of the phone downloads a seemingly harmless app
that contains malicious code. This malicious code will be
able to run background processes, enabling the attacker to
hijack the phone’s camera and take control of it. By us-
ing this ”Spy Camera”, the attacker is then able to use eye
tracking technology to figure out phone pass codes and ap-
plication passwords with ease [WD14].

3.3.2 Countermeasure Proposal

A similarity between these two attacks is that they both use
some variant of technology to deduce what digit the user is
inputting. For PIN Skimmer, the attacker utilizes the cam-
era to guess the orientation of the phone, linking it to the
digit in which the user presses onto the phone. For Spy

Detect Shutdown
resource sound and Preview hiding
utilization vibration
Send out Recover . .
photo or video volume and P'c:;‘éﬁ;‘;gm
via email vibration

Figure 3. Spy Camera workflow. Based on Figure 1 from [WD14]

Camera, the attacker utilizes the camera to keep track of the
user’s eye movements. Since the numbers on the phone are
static and are always in the same position, there can be ma-
chine learning techniques that deduce what position of the
eye correspond to the digit pressed. Thus, the solution that
we propose against these two attacks are a randomization of
the numbers of the keypad.

3.3.3 Countermeasure Analysis

Randomizing the 10 digits on the keypad will be able to
combat against these two attacks. Adding this randomiza-
tion will make it hard for the attacker to link the eye posi-
tion to the digit being pressed. This introduces a sizeable
amount of noise which will help defend against this attack.
However, a negative aspect to this solution is that this so-
lution will inconvenience all users because every time the
user has to input the code, the layout of the 10 digits will
be different. Thus, this solution may frustrate the user and
the user will have to spend a bit more time to input the code
than usual.

3.4. EyeTell
3.4.1 Attack Description

EyeTell is a novel video-based keystroke inference attack
developed by Chen et al [CLZT18]. The attack infers a
victim’s keystrokes entered on a mobile soft keyboard by
capturing the victim’s eye movement and converting it to
a continuous “gaze trace”. The user’s keystrokes can then
be inferred, using different methods for different soft key-
board input types (PIN, pattern, and alphabetical). The full
workflow can be seen in[3.4.11

Experimental results from the group show that EyeTell
can identify top-10 4-digit PINs with probability 74%, top-
10 Android lock patterns with probability 75.3%, and top-
10 likely words with probabilities with probability 63.19%.

Compared to similar keystroke inference attacks,
EyeTell presents the greatest adversarial potential since
it only requires a video of the victim’s gaze trace. Other
attacks such as [BCVOS], [SICT16a], [SAI3], [CCII],
etc require situational assumptions or various assisting

tools: sensors, malware on the victim’s device, analysis of
tablet backside motion, and/or a direct video of the victim’s
fingers interacting with the soft keyboard. The relatively
few requirements needed to execute an EyeTell attack and
its high experimental efficacy for keystroke inference make
the attack a serious threat to user privacy, and thus provides
a particularly significant point of study for our proposed
security policy.

Video Gaze Trace Gaze Trace Word/Sentence
Recording Extraction Decoding Inference

ooomog

t@""‘ & OF0

° OO0

Figure 4. EyeTell workflow. Based on Figure 4 from [CLZ" 18]

34.2 Countermeasure Proposal

EyeTell’s greatest strength is its ability to infer keystrokes
based on just a victim’s gaze trace, without the need for any
external tools or malware on the victim’s device. As a re-
sult, our proposed countermeasure aims to interfere as min-
imally as possible with the actual lock screen password in-
putting process, while also diverting the victim’s gaze trace
enough to nullify the attack. To achieve this, we propose to
have system-level software that, when a user begins to in-
put their lock screen password, will randomly light up cer-
tain keys on the soft keyboard. The light source must be
distracting enough to potentially divert a user’s gaze trace,
while also not being too much of a discomfort to the user
experience. The distraction must also not prevent the user
from reliably entering their password, and cannot occur so
frequently that either users become annoyed or filter it out.

3.4.3 Countermeasure Analysis

Of course, further research and experimental trials would
have to be conducted to iterate on an appropriate light dis-
traction; however, if the user’s gaze trace can be diverted
even once during the process and if the light distraction oc-
curs at random intervals, then this complicates and degrades
the attack in the following ways (we assume that an adver-
sary is aware of such countermeasures):

1. EyeTell’s gaze extraction step itself will inherently
have more noise, since the victim’s gaze trace is no
longer guaranteed to perfectly reflect that of their ex-
act password. This increases the difficulty to obtain an
accurate gaze trace to begin with.

2. We define a successful light distraction as an instance
of the victim’s gaze trace being diverted to a random
part of the soft keyboard that is not the next keystroke
in the lock password. If we let the number of success-
ful light distractions be k, and the total length of the
lock screen password be n, then even if we assume that
the gaze extraction step is perfect, the total number of
possible password candidates increases by a factor of
(). This is because there are () possible locations

for the k£ “false” keystrokes. Furthermore, unless there
is reason to believe that a specific inferred “keystroke”
was merely a result of the light distraction, if the dis-
traction happens to land on the keyboard input button
that changes the keyboard to show symbols and num-
bers instead of letters, this can significantly increase
the number of possible password entries. This would
effectively create an entirely new branch of possible
passwords, creating an exponential effect if £ > 1. A
similar argument can be made for a distraction lighting
up the backspace button, which prevents the attacker
from knowing when an error in the password inputting
was truly an accident or if it was merely a “fake” dele-
tion.

3. EyeTell also uses a dictionary for assistance with word
inference. With random letters “added” to the gaze
trace, strings of characters would no longer require dic-
tionary lookups, but instead would require some form
of fuzzy searching, which is much more complex and
may not even account for words themselves being pur-
posefully misspelled.

Despite the numerous potential benefits towards gaze trace
disruption and increasing inference complexity, our pro-
posed countermeasure will most likely encounter practical
drawbacks. We outline these potential concerns here:

1. If users are distracted enough, they could forget where
they were in entering their password, or how to finish
their password altogether. This would make for an un-
desirable user experience, since most users would like
to minimize time spent unlocking their phones.

2. The implementation for the light distractions may be
complex, since not only should an appropriate light
source be chosen, but also the soft keyboard inputs
would have to support the light feature. This would
require major updates to the phone’s system-level soft-
ware.

3. If the distractions are disruptive enough to the user ex-
perience, they may turn them off in their settings, ren-
dering any implementation useless. This would leave
users vulnerable again to EyeTell, with an additional
dead-weight security feature on their phone.

4. Conclusion

4.1. Summary and Potential Impact

Mobile devices are becoming increasingly integrated
into people’s daily lives. Only a decade ago, the main
features mobile devices offered were simply voice calling
and text messaging, but modern-day phones can browse the
web, host video call, run applications relying on sensitive
personal information, and more. As mobile devices become
more and more central to the lives of average consumers,
attackers are also adapting and continuing to develop new
techniques to attack mobile devices. In this paper, we study
phone lock screen password systems, which are the most
common lines of defense between attackers and the con-
tents of a mobile device. We cover recent three kinds of
recent keystroke-inference attacks — motion-based, wifi-
based, and video-based — and offer potential countermea-
sures to deter such attacks.

Many of the measures we propose should be relatively
simple to implement and to render specific portions of the
various attack pipelines ineffective. They may inconve-
nience users by being more tedious or by interrupting their
workflow on their mobile devices, but we believe that it is
a small price to pay for protection against the types of at-
tacks covered in this paper. Many of these features could be
made so that the user can toggle them on and off. In doing
s0, users have the ability to avoid inconveniences when they
are in environments where they can be more confident that
they will be not at risk from the types of attacks covered in
this paper, such as the comfort of their homes.

4.2. Further Discussion and Alternatives

We ultimately settled on the four keystroke inference at-
tacks, detailed in Section E], due to their different require-
ments and vectors of attack. We also came across similar
attacks, such as using malware on a Smartwatch to obtain
hand motion side channel information about the password
inputting process, as described in [LZD™15]. We realized
that this attack along with many others, such as [CCI11]]
[BCVOE], all fall under a similar category as PIN Skim-
mer or Spy Camera, detailed in (3| and they all benefit from
the same proposed countermeasure. Other different attacks
may also have their potency mitigated by any or a combina-
tion of the suggested countermeasures.

We also considered a few other countermeasure options
for our four attacks:

1. A drop-down menu that contains randomized digits
(for PIN attacks). This would have the benefit of forc-
ing attackers to solve a much more difficult problem
of assessing finger scrolling speed to judge which digit
was selected.

2. A randomized grouping of characters in a new soft

keyboard format (for word inference attacks). This
would introduce more complexity in character/symbol
selection, which is easy for the user, but extremely dif-
ficult for an adversary since group placement would be
randomized, so the number of possibilities increases
exponentially.

3. A new soft keyboard format, where the screen would
be populated with randomly selected characters and
numbers, along with a predesignated target location
on the screen. The user would then be asked to drag
the entire image on the screen until the target char-
acter appeared in the target zone. This would render
any gaze trace or “smudge attacks” [AGM™10] use-
less, since paths dragged on the screen are unique be-
tween attempts, and character positions are completely
randomized.

However, we realized that the randomization from these
ideas inherently degrades from the user experience and
would perhaps never be practical. We eventually settled on
multiple different ways to add noise to the inputting pro-
cess in such a way that user experience is not sacrificed too
heavily.

Another important note is that most modern mobile sys-
tems have an exponentially increasing lock timeout period
after a certain number of incorrect password attempts. If
we assume this to be true on the victim devices, then in
combination with adding noise to lower the accuracy rate of
the attacks’ inference attempts, our countermeasures effec-
tively exponentially increase the time required for attackers
to steal a device’s password. For all intents and purposes,
no practical adversary has infinite computing power or time,
and so this would further strengthen device lock screen se-
curity as a result of the proposed countermeasures.

4.3. Future Work

As for future work that can be done, a few ideas in-
clude developing a thorough security policy for phone lock
screen systems. Because of its importance in the security
of a phone and all of its contents, the lock screen should
be secure to the utmost extent. However, with any system,
there are always going to be loopholes. As a result, the
countermeasures we explored should be considered, espe-
cially if attacks become potent or practical enough to be-
come “‘mainstream” attacks. Additionally, because this pa-
per proposes a few countermeasures, it is worthwhile to
hold a survey of a subset of people that have our counter-
measures installed on their phones and ask about their user
experiences. In general, product manufacturers need to find
a balance between security and user experience, rather than
solely prioritizing security.

References

[AGM™T10] Adam J. Aviv, Katherine Gibson, Evan
Mossop, Matt Blaze, and Jonathan M. Smith.
Smudge attacks on smartphone touch screens.
In Proceedings of the 4th USENIX Conference
on Offensive Technologies, WOOT’10, page
1-7, USA, 2010. USENIX Association.

[ALWS15] Kamran Ali, Alex Xiao Liu, Wei Wang, and
Muhammad Shahzad. Keystroke recognition
using wifi signals. ACM MobiCom, 2015.

[AND20] Application sandbox. Android Open Source

Project, Jan 2020.

[BCVO8] D. Balzarotti, M. Cova, and G. Vigna.
Clearshot: Eavesdropping on keyboard input
from video. In 2008 IEEE Symposium on Se-
curity and Privacy (sp 2008), pages 170-183,
2008.

[CC11] Liang Cai and Hao Chen. Touchlogger: infer-
ring keystrokes on touch screen from smart-
phone motion. pages 9-9, 08 2011.
[CLZ™18] Yimin Chen, Tao Li, Rui Zhang, Yanchao
Zhang, and Terri Hedgpeth. Eyetell: Video-
assisted touchscreen keystroke inference from
eye movements. 2018 IEEE Symposium on Se-
curity and Privacy (SP), 2018.

[GVS20] Chaitanya GVS. Mobile security: What to ex-

pect in the year 2020, Feb 2020.

[HLE16] Marian Harbach, Alexander De Luca, and
Serge Egelman. The anatomy of smartphone
unlocking: A field study of android lock

screens. 2016 CHI Conference, 2016.

[LML'16] Mengyuan Li, Yan Meng, Junyi Liu, Haojin
Zhu, Xiaohui Liang, Yao Liu, and Na Ruan.
When csi meets public wifi: Inferring your
mobile phone password via wifi signals. ACM
SIGSAC Conference on Computer and Com-
munications Security, 2016.

[LZD*15] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou
Li, and Kehuan Zhang. When good becomes
evil: Keystroke inference with smartwatch. In
Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Se-
curity, CCS 15, page 1273-1285, New York,
NY, USA, 2015. Association for Computing
Machinery.

[MK16]

[Raj17]

[SA13]

[SIC*16a]

[SICT16b]

[SSCT08]

[THCS14]

[WD14]

[YCWY20]

Jyoti Malik and Rishabh Kaushal. Credroid:
Android malware detection by network traf-
fic analysis. In Proceedings of the 1st ACM
Workshop on Privacy-Aware Mobile Comput-
ing, PAMCO ’16, page 28-36, New York, NY,
USA, 2016. Association for Computing Ma-
chinery.

Omid Rajaee. In-depth study of captcha, 04
2017.

Laurent Simon and Ross Anderson. Pin skim-
mer: Inferring pins through the camera and
microphone. pages 67-78, 11 2013.

Jingchao Sun, Xiaocong Jin, Yimin Chen,
Jinxue Zhang, Rui Zhang, and Yanchao
Zhang. Visible: Video-assisted keystroke in-
ference from tablet backside motion. 01 2016.

Jingchao Sun, Xiaocong Jin, Yimin Chen,
Jinxue Zhang, Yanchao Zhang, and Rui
Zhang. Visible: Video-assisted keystroke in-
ference from tablet backside motion. In NDSS,
2016.

A. Schmidt, H. Schmidt, J. Clausen,
Kamer Ali Yiiksel, O. Kiraz, Seyit Camtepe,
and Sahin Albayrak. Enhancing security of
linux-based android devices. 01 2008.

Yu-Chih Tung, Sihui Han, Dongyao Chen,
and Kang G. Shin. Vulnerability and pro-
tection of channel state information in mul-
tiuser mimo networks. In Proceedings of the
2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, page
775-786, New York, NY, USA, 2014. Associ-
ation for Computing Machinery.

Longfei Wu and Xiaojiang Du. Security
threats to mobile multimedia applications:
Camera-based attacks on mobile phones.
pages 80-87, 03 2014.

Y. Yang, Y. Chen, W. Wang, and G. Yang.
Securing channel state information in mul-
tiuser mimo with limited feedback. IEEE
Transactions on Wireless Communications,
19(5):3091-3103, 2020.

