
6.857 Final Project: Looming Over Zoom

Aaditya Singh
aaditya@mit.edu

Lauren Oh
laurenoh@mit.edu

William Luo
wqcluo@mit.edu

May 13, 2020

Abstract

Covert keylogging has been an active area over the past few years, but in light
of the recent events with COVID-19, eavesdropping over video-conferencing apps is
now even more of a concern than ever before. In order to investigate the security
vulnerabilities present in video-conferencing apps, we attempt to develop a system
for covert keylogging over Zoom, one of the most popular video-conferencing plat-
forms during the 2020 pandemic. We utilize peakfinding algorithms for keystroke
detection and a convolutional neural network architecture for keystroke classifica-
tion, and achieve above-chance top-1 accuracies of around 10% on held-out data. Al-
though above chance, such a low accuracy is likely not sufficient to recover full typed
passwords from audio recordings, at least demonstrating the difficulties of extract-
ing key strokes from Zoom audio data. We hope to investigate additional architec-
tures like RNNs or Transformers, which could additionally incorporate time between
keystrokes, for future work.

Keywords: security; eavesdropping; keylogging; machine learning.

1 Introduction

Eavesdropping has been an active area of research for almost two decades. Modern se-
curity software knows to look for viruses and bugs that are embedded in the applications
utilized by computer users, but can fail to account for audio eavesdropping later analyzed
to pick up passwords. Acoustic eavesdropping over video-conferencing platforms is a rel-
atively new field, given the increase in video-conferencing usage over the last few years.
In the modern day, with the quick spike in video conferencing software usage seen in
2020 alone, acoustic eavesdropping becomes a greater potential threat and vulnerability.
Compared to eavesdropping physically using external devices (e.g. mobile device record-
ings), video conferences and their recordings are a much more vulnerable way to exploit
keystroke recordings to extract passwords. Our project aims to combine previous research
in the general field of keylogging with its implications on video-conferencing apps, specif-
ically Zoom.

2 Background

2.1 Keylogging

Keystroke logging, commonly referred to as keylogging or keyboard capturing, occurs
when the keys struck on a keyboard are recorded or logged. Typically, keylogging is used

1

mailto:aaditya@mit.edu
mailto:laurenoh@mit.edu
mailto:wqcluo@mit.edu


nefariously to monitor, record, and retreive the keystroke data of an unaware user. Tradi-
tionally, malicious keylogging has been used to eavesdrop passwords and other confiden-
tial information.

A wide variety of keylogging attacks work, ranging from using Wifi transmitters to
detect keystrokes [1] to using inter-key timing [2] to detecting keys from audio [3] [4]. In
our work, we primarily concern ourselves with this last style of attack, as we feel it is of
the most import in the evolving situation we find ourselves in - that of social distancing
and video calls.

2.2 Previous Work

Most previous work on audio keylogging has mainly considered it in four steps:

1. Keystroke Detection: Isolating keystrokes from continuous audio of typing

2. Window (and feature) extraction: Select windows and extract auditory features around
keystroke times from step 1

3. Keystroke classification: Classify the keystroke for each window

4. Error correction (optional): Fix errors that can be identified by considering keys be-
fore/after the given key. Error correction is typically used for keylogging natural
language (as language models can be used for error correction), but is not as appli-
cable in passwords, where a language model is not of as much use.

The first approach to audio-based keylogging back in 2004 actually only considered steps 2
and 3, so it did not constitute a full attack. Specifically, Asonov and Agrawal [3] found that
using Fourier features from the keypress audio lead to good classification performance
(97% accuracy). However, their approach was limited in its applicability to continuous
streams of typing, did not account for noise This approach to audio-based keylogging was
first outlined by Asonov and Agrawal in 2004 [3], who attempted to use the audio of a
single keystroke to identify the keystroke. As a result, they only really addressed steps
2 and 3 of the above pipeline, and even so did this for a small set of keys. Their main
contribution to the field, thus, was that they identified what causes differential sounds for
keystrokes; namely, when a keyboard strikes the underlying “keyboard plate”, a distinct
sound is made based on where on the plate the strike was. This information can be used
to identify the keystroke!

Zhuang et al. 2009 built on top of [3] by encompassing the full 4 steps detailed above
[4]. Furthermore, their attack has the benefit of being unsupervised, as the final error-
correction step involves unsupervised clustering of predicted characters by using a Hid-
den Markov Model (HMM) language model. However, their treatment of the first two
steps, thresholding for keystrokes and picking 100ms windows, is not applicable in gen-
eral scenarios. For example. in the data we collected, we found that roughly a quarter
of keystrokes have less than 100ms between them. Furthermore, thresholding assumes

2



relatively constant peak amplitudes which is not the case for most typers. The main con-
tribution of their paper (beyond the HMM-based error correction) was the use of cepstral
coefficients (as opposed to raw frequencies from the Fourier transform). Cepstral coeffi-
cients are often used in speech processing, and are basically a binned version of the FFT.

After these two seminal papers, the field has grown, with some authors even consid-
ering a video conferencing scenario over Skype [5]. However, many of these approaches
are lacking in their generalizability. A recent paper [6] which we based some our methods
off of aims to generalize better. Specifically, they use modern deep learning techniques
like Convolutional Neural Networks (CNNs) for keystroke detection and classification,
combined with error-correcting Recurrent Neural Networks (a more “neural” version of
HMMs). Although their approach reports a much lower top-1 accuracy of 41%, this accu-
racy is much more akin to what an attacker would actually have to deal with. The down-
side to their approach is that it involves many modalities of sensor data (collected from a
smart phone on the same table as the targeted laptop) and is thus not easily extensible to a
video conferencing scenario. Furthermore, use of an error-correcting language model can
lead to difficulties in applying the technique to passwords.

As will be seen in Section 3, our methods are motivated in large part by the literature
we read. We have introduced modifications where we feel the literature was either lacking,
not applicable, or limiting. Before we detail our approach, however, we introduce a unique
challenge we faced that was not considered in the literature.

2.3 Unique challenge: Zoom Audio Filtering

In a 2018 update, Zoom released an upgraded version of their audio processing algorithms
to detect and suppress background noise. Specifically, Zoom detects keystroke background
noises and scales them down, all while automatically adjusting the rest of the speaker’s
noises (i.e. their speech) to an optimal volume.

This particular audio feature was one our group was not aware of before we began our
project. We discovered its effects when our Zoom keystroke recordings, which were done
in a quiet environment, resulted in two or three loud keystrokes followed by scaled down
soft silence and no discernible keystroke sounds. While the keystrokes are not completely
silent and still noticeable in the waveform graphs of these audio recordings, they are not
distinguishable to the human ear.

Zoom’s suppression and scaling proved to make our learning more difficult since any
notable volume differences between keys were scaled down to appear less relevant. Fur-
thermore, scaling the waveforms down decreases the signal-to-noise ratio of our inputs,
as other soft noise peaks (i.e. from background shuffle noises or vibrations from nearby
cellphones) appear at similar volumes to keystroke peaks.

3



3 Our approach

Our approach follows the first three steps mentioned at the start of Section 2.2 with a
focus on generalizing to different typing speeds and dealing with the noisier environment
present in Zoom.

3.1 Keystroke detection

For keystroke detection, we opted to do something in between the simple threshold-based
system from [4] and the CNN-based detection used in [6]. We used a simple peakfinder
with our own modifications. We found that using simple peakfinders on high-frequency
and noisy audio data results in poor results. A simple peakfinder will identify many more
peaks than necessary. A simple minimum threshold or prominence approach does not
work well either, as the found peaks become too sensitive to the actual magnitude of the
signal, and thus louder keystrokes register as multiple peaks, whereas weaker signal reg-
ister as no peaks. The common fix to this is to add a minimum distance between peaks.
However, we found that trying to specify this parameter was very tricky, due to varying
inter-character peak times (see Figure 3).

Instead, we adapted a heuristic algorithm that takes as input candidate peaks, and
picks the “maximally distant from each other” peaks. Specifically, the algorithm considers
the minimum amount of time it would have to move in either direction to find a value
higher than it. The candidate peaks are sorted based on this metric, and the ones with the
highest values are selected as peaks.

3.2 Windowing and Feature Extraction

Once we identify peaks, we propose windowing from the peak of the previous character to
the next character. Although this may seem like an unorthodox choice that may introduce
confounding peaks into the window, we note that only the actual character’s peak will be
conserved throughout all the windows. Furthermore, taking windows with (potentially)
multiple characters has been done - for example, Giallanza et al. in [6] use 100ms windows
and label them with just the first character in the window. We believe that windowing
from the previous character to the next is a more foolproof way to make sure the whole
peak is captured and is more adaptive in extreme cases (of very short inter-peak intervals
and very long peaks). Features (in our case, cepstral coefficients) can be extracted from
this window and will scale linearly with the size of the window.

A downside of our variable window sizes is that standard classifiers cannot be used,
as they typically assume constant input size. We instead opt for using CNNs with global
average pooling layers preceding readout layers. Convolutions are especially suitable in
our case since the character may be anywhere in the window, so translation invariance is
necessary.

4



3.3 Classifier

In an attack, an adversary would use a pre-trained model to classify keystrokes. As a re-
sult, we worked on training a classifier that would be able to accurately classify keystrokes
on held out data. We investigated many CNN architectures for classification, all loosely
based off of the ResNet architecture, and similar to the architecture in [6]. One of the ar-
chitectures we investigated is shown in Figure 1, and is composed of two residual blocks,
followed by a series of pooling and dense linear layers to map our convolution features to
our character space.

Figure 1: Our model architecture

One important detail is that because our input may be of variable size, which CNNs
are not usually designed to handle, we use a global average pooling layer after the last
convolution, which is applied per channel. The global average pooling serves to shrink
our input size per channel into a single value. This ensures we are able to handle the
variable size inputs (which window from the previous character to the next character).

4 Dataset

Of the three steps of our approach, only the last step involves a trained component, so we
collected a dataset with the focus of training a classifier to identify keystrokes. To simulate
the actual inputs this classifier would receive, we only gave it inputs that were windowed
from a continuous stream of typing using the procedure described in Section 3.2. However,
instead of using our custom peakfinder to isolate keystroke times from the audio stream,
we used an online keylogger that gives timestamps for key-lifts so that we would have
a ground truth and know that our data is not corrupted due to some inaccuracy on the
peakfinder’s part (since no peakfinder is perfect).

5



4.1 Collection

Multiple group members typed out long passages ranging from academic research papers
to New York Times articles while recording themselves using Zoom in a relatively quiet
environment. We chose to use actual articles (as opposed to hand-crafted text) to ensure
naturalistic inter-character interval, as would be observed if one was trying to carry out
this attack. This method, however, had the negative side effect of severe class imbalance.
As a result, we filtered out all classes with less than 100 character samples. For the larger
dataset, this yielded 20 classes, including letters, the space bar, and special characters like
periods and commas.

Figure 2: (From left to right) A graph detailing the frequency of each character, with a
dotted lined to mark a frequency count of 100 and note which characters were included in
our final dataset. A histogram noting the time lengths between keypresses in milliseconds
and their frequency.

4.2 Alignment

After getting the recordings and keylogger files, we had to align them. Each typer was
instructed to start off their typing with three presses of the letter ‘a’, separated by approx-
imately 3 seconds. These 3 keypresses yielded very distinguishable peaks, which made
for easy alignment of audio to keylogger files. After aligning, we noted that our ground
truth labels were still slightly off potentially due to delays between keypresses and the
actual audio being processed and recorded by zoom. However, we hoped that translation
invariance in our classifier would be enough to combat this.

For our data collection, we used a keylogger web application that recorded when each
key stroke was made (based on the release time of the key), and used Zoom’s record audio
feature. We then aligned the audio and keystroke logging data, which gave us our baseline
ground truth.

6



5 Results

In this section, we present our findings, both positive and negative, on the effectiveness of
such an attack. First, we focus on our proposed peakfinding method and discuss its ben-
efits. Next, we dive deeper into the various different models and training hyperparame-
ters we tried, and how these affected out-of-sample classification performance, which was
measured as accuracy on a balanced test set containing 40 samples from each class.

5.1 Peakfinder

As our ground truth labels from the keylogger was misaligned, we found that there was no
clear way of evaluating the peakfinder other than visually. Figure 3 presents the identified
peaks using our method. Although not all peaks are perfect, the identified peaks largely
capture the spikes corresponding to keypresses, potentially missing a few and identifying
some that aren’t actually peaks.

Figure 3: Peakfinder results. Most keystroke peaks are detected, mistakes shown in red
circles red. Note that our approach does not completely mitigate false peaks and does not
necessarily capture all peaks, but it has fewer mistakes than more naive alternatives. The
model is robust (mostly) to varying peak heights and distances between peaks.

5.2 Keystroke Classification

As mentioned in Section 3.3, we used CNN-based architectures. We conducted many ex-
periments, training over 50 different models (with varying architectures or learning pa-
rameters). All models were trained using the Adam optimizer with momentum 0.9. Class
imbalance was accounted for in training using weighted resampling, and in testing by us-
ing a balanced test set. We varied batch sizes from 1 to 64, and found that batch sizes of 16
yielded the most stable results. The training losses and test accuracies for some runs are
plotted in Figure 4.

7



Figure 4: Training loss (left) and test accuracy (right) of a subset of our experiments. Earlier
runs with other learning rates, batch sizes and architectures not shown. All shown archi-
tectures involve a single hidden readout layer of size 32 and increased convolutional filters
to 64 instead of the 32 filters shown in 1. Blue indicates no dropout with a single, linear
hidden layer of size 32. All runs not shown performed similarly to blue or worse. Pink
indicates a run where dropout of 0.2 was added to the final hidden layer. Green indicates
a run where the final hidden layer size was 64, dropout was 0.5, and a learning rate decay
of 0.9 was added. Gray (best) indicates a learning rate decay of 0.8 and use of hidden layer
size 32 with dropout 0.2. As seen, dropout and learning rate decay are critical to boosting
performance of a classifier on this dataset.

In terms of architectures, we tried both adding and removing layers. We found that
adding layers led the network to drop to chance level out-of-sample performance, poten-
tially due to difficulties in training. In fact, we found that the best results occurred when
we only used one hidden readout layer after the global average pooling operation. We also
found that increasing the size of this layer (e.g. from 32 to 64) does not yield significant
increases in performance, but the use of dropout does improve performance. We theorize
that regularization such as dropout is necessary in our case of noisy input data.

Beyond architectures, the main parameters we varied were learning rate. Specifically,
we examined various learning rates (ranging from 10−3 to 10−5) and found that a learn-
ing rate of 10−4 was best. However, this learning rate still plateaus extremely quickly. To
fix this early plateauing, which we later attributed to too large of a learning rate, we in-
troduced an exponential decrease to the learning rate. We found that this led to stabler
training and better out-of-sample performance.

Despite all these hyperparameter and architecture searches, the classifier’s accuracy
maxed out at 10% out-of-sample, which is significantly above the chance level (5%, or 1
out of 20), but not as high as we’d hoped. Especially compared to the top-1 accuracy of
41% in [6], we found our number striking. However, closer inspection of [6] indicates
that using multiple modalities and using an error correcting language model both lead to
significant enhancements and are likely the main reasons for their high reported accuracy.
However, multiple modalities are not readily available in our case, and using a language
model would not be effective in our case (which focuses on guessing passwords).

8



6 Challenges and Limitations

6.1 Challenges

We faced two main challenges throughout the project: establishing a perfect ground truth
for our data, and constructing an optimal architecture (and picking optimal training hy-
perparameters) for our machine learning models.

Within the challenge of establishing a perfect ground truth for our data, the greatest
hurdle came in verifying our audio to character matches and properly discarding out-
liers. Since we had over 15000 samples to work with, we could not go through and verify
the proper matching of every keyboard click to keyboard character. Even if the first few
characters of the sequence are aligned properly, that does not guarantee for us that all of
the characters are properly aligned, since there could be a delay between either when a
keystroke was logged, or when Zoom rendered it in the audio. Therefore, the best we
could do for each audio file was to align the first few characters (see Section 4.2) and as-
sume that the noise margin around each character would not be significant enough to
disrupt our model.

We also faced a lot of challenges on the side of designing our architecture. We initially
implemented the architecture mentioned in [4] without the motion data channel, but we
found very poor results – nothing better than random chance. We then tried investigating
alternative modifications on the architecture, and found some significant improvements
(using a single hidden layer after the convolutions, using dropout, using learning rate
decay). However, these improvements still only boosted our accuracy to 10%. With more
computational power, more extensive grid searches and neural architecture searches could
be performed. However, we stress that keystroke identification from the dampened audio
in Zoom is not a trivial problem for adversaries to solve, involving simply copying a model
off of an academic paper.

6.2 Limitations

In Section 4, we noted that our training and testing datasets only included characters with
frequency counts greater than 100. As such, our results are only generalizable to the char-
acters that were included in our datasets. In the interest of simplicity and attempting to-
wards higher accuracy, we were unable to examine the keystroke tendencies of numbers,
most special characters, and the Shift key. In particular, we were unable to accommodate
the Shift key because of complications it caused in audio recordings. For most keys, the
sound of pressing the key and releasing the key is concatenated into one noise that is iden-
tified as one peak in audio waveforms. However, for the Shift key, the purpose of the key
divides the key press and release into two distinct peaks. While recording the timestamps
of both the key press and release is not difficult, the release is oftentimes combined with
the release of another key that is used in tandem. Two key releases are thus recorded at the
same time, and the noise of these two actions are blended into one sound that make one
key virtually indistinguishable from another. When generating our datasets, we ignored

9



both the Shift key and the keys that were immediately before and after it.
Our models may have limited generalizability to other keyboards, as all of our data

samples were collected on MacBook laptop devices, meaning the microphone setup is
same across all data samples. Our use of the built-in laptop keyboards for our recordings,
with no variety in alternative desktops or keyboard extensions, could also lead to problems
generalizing, as distance between our keyboards and laptop microphones is relatively the
same. Having included samples of recordings with alternative keyboards would have
given insight to identifying keystrokes with different baseline pitches and/or distances
from microphones - we were unable to do so due to limitations in resources.

Finally, our data collection process only included gathering data samples from quiet
environments with no background noise. Although our dataset does feature more noise
(by virtue of dampened audio) than previous academic papers, it is still far from the typ-
ical scenario. For example, our model may not generalize to situations where someone is
speaking and there is typing in the background, a common scenario in Zoom calls. We
expect improvements to both the keystroke detection process and keystroke classification
process would have to occur before this is possible.

7 Conclusion

7.1 Extensions

For future work, we would like to investigate the use of RNNs and Transformers for this
task, since they tend to more naturally lend themselves to time-series data, as we have
here. We also believe it would be fruitful to explore the combination of CNNs and Trans-
formers, similar to how previous work has investigated the effects of stacking an RNN on
top of a CNN [4]. To keep our models relevant for password detection, we would want
to explicitly include typed nonsense words and phrases in our dataset to prevent the error
correction module from just relying on language patterns (and instead use patterns in the
time between keystrokes).

Additionally, since our work was done in a quiet environment across relatively similar
keyboards, we would like to explore the generalizability to other noisier environments
with different keyboards. Addressing the other limitations we listed above, expanding
our project to accommodate more keyboard keys and a wider berth of laptop devices are
avenues we could explore to improve our reach.

7.2 Final Remarks

Overall, we found the identification of keystrokes with audio recording-based keylogging
a difficult feat. This is largely due to difficulties in generating accurate and appropriate
datasets, as well as difficulties in finding appropriate parameters for our CNN models.
Despite our disappointment in the low accuracies of our final results, the implication that
Zoom recordings are relatively safe from audio-based keylogging attacks is comforting.

10



References

[1] K. Ali, A. Liu, W. Wang, and M. Shahzad, “Keystroke recognition using wifi signals,”
ACM MobiCom, pp. 90–102, 09 2015.

[2] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes and ssh timing
attacks.” USENIX Security Symposium, vol. 10, 08 2001.

[3] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” 2004 IEEE Symposium on
Security and Privacy, 2004.

[4] L. Zhuang, F. Zhou, and D. Tygar, “Keyboard acoustic emanations revisited,” ACM
TISSEC 1, p. 3, 2009.

[5] A. Compagno, M. Conti, D. Lain, and G. Tsudik, “Don’t skype type! acoustic eaves-
dropping in voice-over-ip,” ACM ASIACCS, 2017.

[6] T. Giallanza, T. Siems, E. Smith, E. Gabrielsen, I. Johnson, M. A. Thornton, and E. C.
Larson, “Keyboard snooping from mobile phone arrays with mixed convolutional and
recurrent neural networks,” ACM Interact. Mob. Wearable Ubiquitous Technology, vol. 3,
no. 2, p. 22, 06 2019.

11


	Introduction
	Background
	Keylogging
	Previous Work
	Unique challenge: Zoom Audio Filtering

	Our approach
	Keystroke detection
	Windowing and Feature Extraction
	Classifier

	Dataset
	Collection
	Alignment

	Results
	Peakfinder
	Keystroke Classification

	Challenges and Limitations
	Challenges
	Limitations

	Conclusion
	Extensions
	Final Remarks


