
Ring Signatures - Analysis and Implementation

Andrés Fábrega, Jonathan Esteban, Damian Barabonkov

{andresfg, jesteban, damianb}@mit.edu

1 Introduction

When signatures were first introduced in Diffie and Hellman’s seminal paper,
these were presented in a single-user context: Alice uses her secret key to sign
a message, and Bob uses her public key to verify it. As the field grew, however,
cryptographers started envisioning a ”multi”-signer notion of digital signatures.
In particular, group signatures became a well studied concept: a user signing a
message on behalf of a group, while preserving total anonymity. The big caveat
with this model is that it relies on the presence of a group manager, who adds
people to the group, and can reveal the signer if needed. These scheme certainly
have applications, but, in some contexts, this dependency on an organizing party
is not possible or desired. As such, ring signatures schemes are a way of solving
this problem, providing total anonymity without requiring additional setup nor
manager. Note that neither group nor ring signatures are better than the other:
the context of the problem at hand determines which model is more appropriate.
In this project, we analyze ring signatures, their construction, their security, and
go over a functioning Python implementation.

2 Overview

Ring signatures were formalized by by Rivest, Shamir, and Tauman[1]. In
this project, we follow their definitions and proposed construction.
Essentially, ring signatures are a way for a single user to anonymously sign a
message on behalf of a group of people. This is perhaps best explained with
an example use case: let’s imagine that MIT has decided that Fall 2020 will be
in person (fingers crossed), but decides not to reveal this just yet, for whatever
reason. Having said this, a rogue member of the administration decides that
students need to know this information as soon as possible. As such, he/she
use a ring signature scheme to sign this information on behalf of all members
of the administration, and sends this to the students. Later on, students can
verify that, indeed, someone inside the administration signed this message, but
without knowing which specific member it was, and thus confirm that its legit
and valid. Importantly, other administrative members can’t know which of their

1



colleagues signed and leaked this message. Anonymity is totally preserved, even
for members of the group.

More concretely, to sign, the signer takes all public keys of the people that
he/she wants to include on the group (from personal websites, or wherever the
specific people decide to publish their public keys), and uses these and his/her
secret key to sign the message. Later, a signature, which contains all public keys
inside, can be verified, confirming that the message was signed with some secret
key corresponding to one of the public keys in the signature, and thus being a
legit leak. Importantly, note that there is no setup nor coordination between
members involved, and we don’t assume anything about the relationship of the
group members. Also group members do not have a say or not if they are
included in the group, as this is up to the signer and which public keys he/she
takes when computing.

3 Construction

Now, we will go over a specific construction from the original paper that
uses RSA (although we could use other trapdoor functions with some tweaking).
Note that the primitives and details presented here are oversimplified; for a full
description, reference the original paper.
First, we will go over a set of primitives used in the construction:

1. An issue with dealing with so many public keys is the fact that evidently,
all the public moduli are different. So, each of the trapdoor functions
may have different domain sizes. This makes it hard to combine into one
signature, so instead we will use an “extended” trapdoor permutation,
which basically extends the domain of each one of the f to to {0, 1}b, where
2 ∗ ∗b is greater than all public moduli. Essentially, for an input of b bits,
gi will run fi on the lower order bits of m, up to the modulus, and leave
the higher ordered ones unchanged. Concretely: gi(m) = qi · ni + fi(ri),
where m = qi · ni + ri, 0 <= ri <= ni.

2. We assume black box access to an ideal symmetric algorithm. Our only
assumptions about Ek is that it’s deterministic, and it’s a permutation.

3. We will need something called a combining function. This is a function
that takes a pair (k, v) as a key value, a series of b-bit strings, and produces
some output z as a function of these. We want this function to satisfy
three properties. First, it needs to be one-to-one (if we have all b-bit
strings except for one). Secondly, we need to be able to efficiently solve
for a single missing y value. That is, if we know k, v, the output z, and
say y2 to yr, we can efficiently find the y1 value that makes this equation
true. Note that there is one and only one y1 value that satisfies this
(one-to-one, as mentioned above). Thirdly, if all yi are constructed from
gi, we can’t find none of the underlying xi without knowing the secret
key for fi. A construction that satisfies this, and the one we will use, is

2



Ck,v(y1, ..., yr) = Ek(yr⊕Ek(yr−1⊕Ek(...⊕Ek(y1⊕v)...))). This is clearly
one-to-one since E and XOR are permutations. Also, we can efficiently
compute the output value by performing all nested encryptions straight
through. Lastly, note that, if we are missing a specific ys value, we can
solve for it, if we know k, v: we can solve backwards from Z, by XOR
ing nested decryptions up to to the missing value, and XORing this with
nested encryptions from the missing value onwards.

With these primitives at hand, we can now build the sign and verify opera-
tions.

3.1 Sign

As stated in the overview, the ring sign operation takes as inputs the public
keys for all ring members, the message, and the secret key of the signer. In
addition, the signer specifies (via an index), which of the public keys corresponds
to his/her private key. We then proceed as follows:

1. Compute the key for the symmetric encryption algorithm, by hashing the
message (note that we assume we are in the ROM): k = h(m).
This may seem a bit concerning, naturally, but the security of the scheme
does not rely on the choice of key for E, as we will explain later.

2. Pick, at random, the second half of the key for the combining function:
v ← {0, 1}b.

3. Pick xi for members of the group, except for the signer, and compute the
yi strings, using the public keys: yi = gi(xi).
Note that here we are using the extended domain alternative, instead of
fi directly.

4. ”Invert” the combining function to find ys such that Ck,v(y1, ..., ys, ..., yr) =
v
A few interesting things to highlight: first, note that here we are using
two of our assumptions about C. As stated earlier, we assume that there
is only one such ys value that satisfies this ring equation, and we assume
that, if we have all other yi (in addition to k, v), we can efficiently find
the missing string (in this case ys). In addition, note that we are using
the same value, v, as both the (half) key value and the output value. This
creates a ”cyclic”, ring-shaped (and hence, the name ”ring signature”)
structure of computation, where the first value (the inner XOR) is the
same as the last value (the output). This ring structure is crucial for the
unforgeability of the scheme.

5. The signer computes his/her xi value, by using the secret key: xs =
g−1
s (ys).

6. The signature, to be outputted, is then (P1, ..., Pr, v, x1, ..., xr).

3



This is the entire sign algorithm. Essentially, the signer samples a bunch of
random xi strings, and takes advantage of the combining function to find the
single xs such that the equation is satisfied. In particular, note that we need
knowledge of a secret key: the cyclical dependency on v, and our use of the
symmetric encryption algorithm, makes it such that randomly guessing all yi
values (i.e., randomly guessing xi values and computing gi(xi)) that make the
equation true is negligible. So, the only reasonably way to compute all values is
by solving for one of them. Another interesting observation is that we output all
the xi values instead of all the yi values. It may be confusing at first why this is
required: if, given the xi, anyone can compute the yi, why can’t we just simply
output the yi directly? The reason for this is that this forces the signer to hold
a private key. Without this, forging a signature would be trivial: compute k, v
and all yi except for one, and efficiently solve for the missing ys value.

3.2 Verify

As stated in the overview, the ring verify operation takes as inputs the
signature, and a message. Essentially, verification is applying all steps of the
signature algorithm, but in reverse. We proceed as follows:

1. Use the public keys to get all the yi from xi: yi = gi(xi).
As stated earlier, note that outputting all xi and having the verifier com-
pute the yi, instead of sending the yi directly, is crucial. Also, note that
the public keys (as well as all xi) are found inside the signature.

2. Find the first half of the key: k = h(m).
The value v is already inside the signature, so these two values uniquely
specify which combining function, inside this family, we are using.

3. Check that the yi (and, hence, the xi) are valid: Ck,v(y1, ..., yr) = v.

The check above tells the verifier if the signature is valid. As mentioned earlier,
a list of valid xi can only be found with knowledge of at least one secret key.
As such, checking the combining function guarantees that, w.h.p., the signature
was indeed crafted by a ring member.

4 Security Analysis

The main novel feature of ring signatures is the anonymity of the signer.
To reiterate this point, when a signature is published with all of the potential
actors (in the form of their public keys), an adversary cannot tell, w.h.p., which
of the public key bearers was the perpetrator of the signature. This anonymity
comes from the property that the outputs of any given trapdoor function and its
inverse is random and unpredictable. Recall that in constructing the signature,
the signer picks values of xi at random for all members except themselves (xs).
Then using these xi’s, the trapdoor function and combining function, a valid
ys is solved for which validates and completes the ring signature. Then this ys

4



goes through the inverse to retrieve xs. Notices that at this step, xs is entirely
random. And so where the other xi’s. The resulting x1 . . . xr including xs are
completely random. And thus the adversary has no information to use to guess
which xi came from the real signer.

Additionally, this signature scheme must also be secure in the traditional
sense of signature security – that is an adversary cannot create any valid sig-
nature in the name of another party (unforgeability). This proof is reduced to
the fact that a trapdoor cannot be easily inverted without the complementing
private key. In other words, the adversary could complete all steps of the signing
process up until when they would need to invert ys to get xs which is by defini-
tion hard without the signer’s private key. Moreover, even with a signing oracle
that can be applied on all messages except the once in question, that message is
the key to the pseudo-random permutation function. So the resulting signature
would be useless in helping compute the signature of another message since the
Ek is entirely different and scrambles entirely differently in a completely random
and unpredictable manner.

5 Implementation

Our application was split into two parts: the backend where the crypto-
graphic functions would be computed, and the frontend which would be a user’s
gateway to these functions. The entire application runs entirely on the localhost
network to avoid sending sensitive information over the wire.

5.1 Backend

For the backend, we used the Flask framework that serves the cryptographic
Python code to the frontend. Flask exposes port 5000 to communicate with
the frontend. To generate RSA keys and support AES functions, we used the
”cryptography” python library. Our cryptographic primitives were public and
private keys generated through RSA. We used AES with CBC initialized with
a random IV as our pseudorandom permutation. However, per signature, the
same IV is used to both sign and verify. The trapdoor functions follow the
textbook (e, d, n) modular exponentiation of RSA. All randomness is generated
from the os.random library which is cryptographically secure.

The library code, found inside the ”crypto” subdirectory of our project repos-
itory, is loosely organized as follows:

• crypto utils.py Contains our implementation of Ek. As mentioned above,
the way we went about this is by using AES-CBC, but reusing the same
IV inside the signature. That is, we sample a fresh IV every time we start
a signature, but reuse it every time we call Ek inside the signature. We
then include the IV as part of the signature, so that the verifier can use
the same permutation. Another small ”hack” we had to do was to make

5



the value b a multiple of 128 (AES’s block length). Without this, the
AES subroutine would try to pad the message, and it wouldn’t be a true
permutation. With these two tricks in place, our algorithm behaved like
a true pseudorandom permutation.

• ring.py Is an interface representing a ring of users. This interface is later
on extended by sign.py and verify.py. Essentially, this class contains in-
formation about the public keys and the value b of the extended domain.

• signer.py, Which extends ring.py, represents a ring of users for which a
message is being signed. In addition to the aformentioned attributes, it
holds the signers secret key, and provides utility functions to sign a mes-
sage. This essentially implement the sign algorithm described on section
3.1.

• verifier.py, Which extends ring.py, represents a ring of users for which a
message is being verified. It provides utitlity functions to verify a message,
and essentially implements the algorithm described in 3.2

• sing main.py Is the main interface used to sign messages. This can be run
by clients directly, as a CLI. In addition, this is what our frontend calls
to interact with our crypto code. As mentioned in the high-level descrip-
tion, signer.py and verifier.py work with RSA keys from the ”cryptogra-
phy” package, which are RSAPrivateKey and RSAPublicKey objects. As
such, this interface serves as the bridge between the ”real world”, and the
working functions which use these objects. More specifically, sign main.py
takes, via command line arguments, the message to be signed (as a string),
a .PEM file containing all public keys, the index corresponding to the
signer’s public key, a .PEM file containing an (encrypted) secret key, and
the name out the output file where the signature should be saved. We
then parse the keys, in the universal PEM format for keys, into the ap-
propriate objects, create a Signer object (from signer.py), and do all the
work. Then, we save a .txt file (as specified by the last command line
argument), containing all public keys, the xi, the value v, and the iv.

• verify main.py Is the main interface used to verify messages. It works very
similar to sing main.py, and serves a similar purpose, so we will not go
into much depth. Essentially, users pass in a message (as a string), and a
signature file, following the format from sign main.py, and verifies if this
is a valid signature.

Overall, the neat thing about our code (besides being complete and secure, of
course) is that it is very implementation-independent, and works as an ”appli-
cation” instead of simply a ”library”. In particular, users just need to hold
standard RSA keys, and don’t have to hold these as specific Python objects in
order to interact with the library.

6



5.2 Frontend

The frontend comprises of a simple user interface built using Node.js and
the Vue.js framework. The Vuetify component library was used to achieve a
minimal look. The frontend server exposes port 8080 in order to communicate
with the backend server.

Before using the application, users need to, unsurprisingly, start it, by run-
ning ”./run.sh” inside the main directory. This application runs locally in the
machine of the user, for security reasons, instead of being an external web server.

To sign a message, a user must first input a .PEM file that contains the
public keys of the members of the ring. Then they must add the index of their
public key within the ring. Afterwards they must input a file that contains the
encrypted private key along with the password used for the encryption. Finally
the user adds the message to be signed into the form. On submission, a file
”ring-signature.txt” is created on the local directory.

To verify a message a user must simply attach the ”ring-signature.txt” file
into the verification form and add the message to be verified. The application
will then verify the message and will inform the user accordingly.

6 Results

Our application works amazingly well: as of this moment, we don’t know of a
single edge case where it doesn’t behave as expected. We tested a large amount
of different scenarios (which you can test for yourself by using the application),
and the output was always the expected one. To name a few:

• Valid inputs produce a valid signature.

• A valid signature is correctly verified.

• Attempting to sign a signature with the wrong public key index throws
an error.

• Attempting to verify a signature for x, when this is actually a signature
for y 6= x, is correctly verified to be false.

• Attempting to change the signature in any way (including, but not limited
to, deleting public keys not corresponding to the signer, changing the order
of any two keys on the signature, etc) is correctly verified to be false.

These are just a few of the things we tried. To our knowledge, it behaves exactly
as specified (albeit our evidence is merely empirical).

7



Signing a message

Verifying a correct message

Verifying a wrong message

8



7 Conclusion

Ring signatures are a fascinating concept. This project gave us a great op-
portunity to explore them in great depth, and get a very solid grasp of how/why
they work. In addition, writing our own crypto library was a very rewarding
and rich experience, as we got a chance to see all the nuances that this in-
volves. Overall, we are very proud of our end product, and the fact that this is
a functioning application which anyone can use.

8 Acknowledgments

We want to thank the authors, Rivest, Shamir, and Tauman, for their paper
How to Leak a Secret, which motivated this project and served as the guide.
Also, we want to thank our professors Ron Rivest and Yael Kalai, and the rest
of the 6.857 staff, for all the knowledge they shared with us.

9


