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The Ethereum blockchain offers smart contracts as a
way of handling financial promises. These are implemented
as Turing-complete programs allowing a smart contract
creator to execute arbitrary code in handling transactions.
These smart contracts are available for public viewing and
are susceptible to being exploited. We aim to do a security
analysis on common smart contracts and explore what
kinds of critical vulnerabilities may exist.
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I. Foundations
Blockchain technology’s greatest strength is allowing

the decentralization of historically centralized services.
Bitcoin [9] has a market cap of almost $200 billion and
sees a daily trading volume of about $100 billion. Besides
Bitcoin, there are countless other ”alt-coins” that each
have their own platform and offer a type of service.
Ethereum [2] is one platform that allows digital assets
be directly controlled by a piece of code called a smart
contract. Smart contracts essentially allow systems that
automatically move digital assets according to pre-defined
rules. Decentralized autonomous organizations (DAOs)
are long-term smart contracts that are controlled by share-
holders. The DAO [8], a crowdfunded venture capital fund
that existed as a smart contract, had over $50 million
stolen due to an exploited bug in the smart contract
language Solidity. In fact, this incident is the reason why
Ethereum was hard-forked and why we see another alt coin
”Ethereum Classic”. Other high profile smart contracts
have also been targeted and lost their funds to these types
of attacks. As the usage of smart contracts becomes more
prevalent, it is critical to address bugs in smart contract
implementations and in Solidity itself.

Smart contract vulnerabilities can be classified [14]
as blockchain vulnerabilities, Solidity vulnerabilities, and
software security vulnerabilities. The Transaction Order-
ing Dependency problem is one blockchain vulnerability
which involves a new block on the chain containing mul-
tiple transactions invoking the same contract. There is no
certainty in the state of the contract when either individ-
ual transaction invokes the contract because the order is
not known until after the block is mined. The Timestamp
dependency problem says that a smart contract using
timestamps of blocks can potentially be manipulated by
malicious miners who modify their local system’s time.

Solidity compiler vulnerabilities are bugs within the
smart contract’s high level language and how it generates
the Ethereum Virtual Machine (EVM) bytecode. There

have not been many CVE’s published on this which makes
the EVM an excellent candidate for fuzzing.

Software security vulnerabilities are those due to er-
roneus smart contract code and improper Solidity practice.
The DAO attack was victim to a re-entrancing attack
where the contract uses an unsafe function call.value()
that allows the attacker to take advantage of a callback to
recursively withdraw funds from a victim contract. Other
usual security vulnerabilities such as buffer overruns and
integer over/underflows also fall under software bugs.

The parity multisig attack was one incident where $50
million of Ethereum was frozen due to an attacker calling
an unprotected function and gaining ownership of a public
smart contract library that was imported by other con-
tracts. The attacker invoked the kill function that removed
the contract from the blockchain. This could have been
mitigated by using a private modifier on the function that
allowed the attacker to escalate privileges.

Ethereum smart contracts rely on ”gas”, which is addi-
tional transaction fee paid to the miner for borrowing their
computation ability on the blockchain. If this gas runs
out before an operation is over, the callee contract throws
an exception and these must be properly checked by the
caller contract. This applys to all other exceptions that can
be raised such as when exceeding stack capacity, or any
other unknown system error occurs. These also fall under
software security vulnerabilities that can be mitigated by
safe code practice.

II. Common Vulnerabilities
As mentioned, there exist a variety of smart contract

weaknesses [16] due to software errors, EVM exceptions,
blockchain errors, etc. It helps to look at some Solidity
code examples and understand how exactly the exploits
would be triggered. The following samples demonstrate
vulnerabilities besides crypto implementation flaws, obso-
lete function usages, and typical programming malprac-
tice.

Public access to critical private data: When a
contract uses the private modifier on a function or field,
it does not mean that these variables cannot be read.
Any attacker can look at the transactions related to this
contract on the public blockchain to figure out the state
of all variables. In the following example, an attacker
can simply calculate what number they need to trigger
selectWinner into transferring the contract balance to
his address by first observing the value at numbers[0].
This would be seen the arguments to play in a previous
transaction. One way to resolve this for a ”game” like



the contract below is to use a commitment scheme that
hides values using hashes until both players have picked
numbers.
contract Test{

uint [ 2 ] pr ivate numbers ;
address [ 2 ] pr ivate addrs ;
u int idx = 0 ;

funct ion play ( uint number) publ i c payable {
r equ i r e (msg . value == 1 ether ,

’must be c a l l e d with 1 ether ’ ) ;
numbers [ idx ] = number ;
addrs [ idx ] = msg . sender ;
idx++;
i f ( idx == 2) selectWinner ( ) ;

}

funct ion selectWinner ( ) pr ivate {
uint n = ( numbers [ 0 ] ∗ numbers [ 1 ] ) % 2 ;
( bool success , ) =

addrs [ n ] . c a l l . value ( address ( t h i s ) . balance ) ;
r equ i r e ( success , ” t r a n s f e r f a i l e d ” ) ;
de l e t e numbers ;
de l e t e addrs ;
idx = 0 ;

}
}

DoS by uncontrolled gas consumption: All smart
contracts consume gas depending on how many instruc-
tions must be computed based on what function was
called. This gas price and amount is specified in the
transaction sent to the contract. Miners are incentivized
by higher gas prices thus transactions with high gas prices
are usually completed quicker. In Ethereum, the sum of all
transactions in a block cannot exceed a gas limit threshold.
If a contract like the one below maintains an array of
unbound size, it can lead to a denial-of-service condition
where the function that loops across the array’s values may
exceed the block gas limit. This means that it is critical
that developers do not loop over arrays that are expected
to grow over time.
contract Test {

address [ ] addr_l i s t ;

funct ion addAddress ( ) publ i c {
addr_l i s t . push (msg . sender ) ;

}

funct ion trans f e rAddres se s ( ) publ i c payable {
f o r ( uint i =0; i < addr_l i s t . length ; i++) {

// doing ANYTHING i s a DOS r i s k
}

}
}

Arbitrary data write: Similar to how in a standard
buffer overflow an attacker can overwrite critical data such
as a function return address, there exists a similar problem
where anyone may overwrite the owner of a contract. This
would then allow them to call privileged functions such
as a withdrawal that validates the sender address of a

transaction against the contract owner. Developers should
ensure that there are no out-of-bounds accesses where
writes to one data structure might corrupt another data
structure in the address space.
contract Test {

address publ i c owner ;
uint256 [ ] map;

funct ion Test ( ) publ i c {
owner = msg . sender ;

}

funct ion se t ( uint256 key , uint256 value ) publ i c {
map[ key ] = value ;

}

funct ion get ( uint256 key )
publ i c view returns ( uint256 ) {
return map[ key ] ;

}

funct ion withdraw () publ i c {
r equ i r e (msg . sender == owner ) ;
msg . sender . t r a n s f e r ( address ( t h i s ) . balance ) ;

}
}

Insufficient entropy for random values: One popular
use of smart contracts may be in gambling applications,
which typically rely on pseudorandom number generators
to pick winners. Due to the state of a contract being public
on the blockchain, having a source of randomness is non-
trivial. For instance, relying on the timestamp as a random
value does not work because a miner can arbitrarily set
their local machine times. One way to solve this is to use a
commitment scheme to commit a guess and answer before
revealing.
contract Test {

uint8 answer ;

funct ion in i t_cha l l enge ( ) publ i c payable {
r equ i r e (msg . value == 1 ether ) ;
// hash ( previous blocks hash | timestamp )
answer = uint8 ( keccak256 (

block . blockhash ( block . number − 1) , now ) ) ;
}

funct ion guess ( uint8 g ) publ i c payable{
r equ i r e (msg . value == 1 ether ) ;

i f ( g == answer ) {
msg . sender . t r a n s f e r ( address ( t h i s ) . balance ) ;

}
}

}

Race condition: By nature of being on a blockchain,
some transactions that call the same contract may occur
in the same block and thus their ordering depends on the
miner who completes it. One simple example is if there
was a contract that awarded tokens to the first person to
guess a correct value. Let’s say you figured out the answer
and send your transaction onto the network. In the time



it takes for the block to get mined, an adversary sees your
transaction and copies the answer you found and sends
their own transaction, except they provide a much higher
gas value. Rational miners would complete the adversary’s
transaction before yours, letting the adversary win the
money instead. To mitigate this situation, the contract
can store the salted hash of the answer and then compare
it against the salted hash of your guess.
contract Test {

address publ i c owner ;
u int publ i c p r i z e ;
bool f i n i s h e d ;

funct ion Test ( ) publ i c {
owner = msg . sender ;
f i n i s h e d = f a l s e ;

}

funct ion s e tPr i z e ( ) publ i c payable {
r equ i r e ( ! f i n i s h e d ) ;
r equ i r e (msg . sender == owner ) ;
owner . t r a n s f e r ( p r i z e ) ;
p r i z e = msg . value ;

}

funct ion c la imPrize ( uint guess ) {
r equ i r e ( ! f i n i s h e d ) ;
r equ i r e ( guess == keccak256 (” s e c r e t ” ) ) ;
msg . sender . t r a n s f e r ( p r i z e ) ;
f i n i s h e d = true ;

}
}

DoS through improper exception handling: Con-
tracts that perform external calls such as sending a pay-
ment to another address may be susceptible to a denial-
of-service condition if this call occurs in a loop. In other
words, it is bad to attempt multiple payments in one trans-
action because if one of them fails, the rest of the payments
will not happen and the funds are effectively frozen until
the exception somehow does not occur anymore.
contract Test {

address [ ] refundAddresses ;
mapping ( address => uint ) publ i c re funds ;

funct ion Test ( ) {
refundAddresses . push (0 xdeadbeef ) ;
refundAddresses . push (0 xd15ea5e ) ;

}

funct ion re fundAl l ( ) publ i c {
f o r ( uint x ; x < refundAddresses . length ; x++) {
// except ion on x=0 causes refundAddresses [ 1 ]
// to never get a refund

requ i r e ( refundAddresses [ x ] . send (
re funds [ refundAddresses [ x ] ] ) ) ;

}
}

}

Integer under/overflow: This type of vulnerability hap-
pens when an arithmetic operation results in a value
greater than the maximum or smaller than the minimum

for a specific type. For instance, trying to store 28 in a
uint8 type would actually store a 0 because the value
wraps around. This is mitigated by using a safe math
library that checks for overflowing
contract Test {

uint publ i c number = 1 ;

funct ion sub ( uint guess ) publ i c {
number −= guess ;

}
}

Unprotected self-destruct: This is a simple improper
access control vulnerabilitiy but it is significant because it
is the reason why the parity multisig attack occurred. An
attacker was able to escalate privileges and self-destruct a
library imported by many other contracts freezing all the
funds in those contracts. In order to defend against this
vulnerability, a developer should implement proper access
controls if needing this functionality at all.
contract Test {

funct ion s u i c i d e ( ) {
s e l f d e s t r u c t (msg . sender ) ;

}
}

Re-entrancy: This is a relatively common and devas-
tating attack where calling an external contract allows an
attacker to take over control flow by recursively calling
back into the contract before the initial call’s appropriate
state changes occur. The DAO attack was victim to re-
entrancy where an attacker recursively withdrew funds
using a single call. Similarly, in the example below, the
condition that allows a caller to trigger a transfer depends
on a state that is not changed until after the external
call occurs. The msg.sender.call.value(amount) allows
an attacker to specify a function they can call back into
after the transfer happens but before the necessary state
change. This vulnerability is mitigated by performing all
of a contract’s state changes before doing an external call.
contract Test {

mapping ( address => uint ) publ i c c r e d i t ;

funct ion donate ( address to ) payable publ i c {
c r e d i t [ to ] += msg . value ;

}

funct ion withdraw ( uint amount) publ i c {
i f ( c r e d i t [ msg . sender ] >= amount) {

r equ i r e (msg . sender . c a l l . value (amount ) ( ) ) ;
// t h i s s ta t e change occurs a f t e r c a l l
c r e d i t [ msg . sender ] −= amount ;

}
}

}

III. Initial Approach
The plan was to use Manticore [10], a symbolic exe-

cution engine that supports EVM bytecode (and other



architectures) to maximize code coverage on smart con-
tracts sampled from Etherscan [5]. Manticore can simu-
late the EVM as well as simulate an entire ”Ethereum
world” where a contract may call on other contracts. One
advantage is that this analysis can be done without any
real Ethereum coin because Manticore can set arbitrary
amounts for contracts and wallets you define in the API.

The objective was to identify devastating vulnerabilities
we have seen before such as the re-entrancing attack on the
DAO that allows an attacker to steal funds. Manticore
would provide inputs that will hit various branches in
smart contracts and the next step is to apply a fuzzer to
user-controlled inputs in order to generate corner cases.
In other words, we want to cause as many exceptions
we can along every branch in the code and log them for
further analysis. The collected smart contracts will also be
analyzed for semantic bugs after reading up on the latest
version of Solidity and recommended practice.

One difficulty in the approach may be dealing with all
the versions of Solidity being used in the wild. Solidity
is constantly being patched which causes smart contract
writers to be slow in keeping up. Manticore fully supports
Solidity versions pre-0.5.0 so we will have to scrape con-
tracts using Solidity 0.4 and older.

Once a vulnerabilitiy is found, it will be tested on
an online Ethereum development environment called
Remix [15]. Remix makes it simple to write Solidity code,
compile it into bytecode, and interact with the Ethereum
test networks. The user can also set a blockchain state to
force the contract to execute under arbitrary parameters.

IV. Approach
After some more reconnaisannce, it turned out that

most contracts on Etherscan are actually honeypot con-
tracts. Honeypot contracts look vulnerable but actually
have some hidden state that is difficult to discern at a first
glance, and can thus trick malicious actors into sending
it money. We take a look at some of these, but we also
expand our scope to contracts that are not shown on
Etherscan.

Etherscan shows the last five hundred verified contracts
on the blockchain, meaning that the owner publicly pub-
lished what they claim is the source. Given that the
blockchain is always moving with nearly a million trans-
actions a day, there are vastly more contracts than the
ones shown on Etherscan. The issue is that Manticore does
not support execution on bytecode. Most of the contracts
on the blockchain do not have verified source code and
are only visible as the EVM bytecode they were compiled
as. Moreover, there is little incentive to analyze verified
source code contracts if most of them are honeypots. We
used a tool Pakala [13] that does symbolic execution on
EVM bytecode instead of Manticore to look for vulnerable
contracts. This method allowed us to perform mass scan-
ning of bytecode so we could try to hit as many contracts
as possible for common vulnerabilities. Another tool we

explored is called Echidna [3] which does fuzzing of smart
contracts in order to violate assertions made by a user in
order to see how one might test their smart contract before
deploying it.

V. Exploits and Honeypot Contracts
On our quest to find vulnerable contracts on the main-

net, we often stumbled on something called ‘Honeypot
Contracts’. These are pretentious Ethereum smart con-
tracts that have been deliberately constructed to look
vulnerable to the unsophisticated eye, deployed with the
malicious intent of fooling an attacker into spending coins.
Consider the following OpenAddressLottery contract as an
example (code truncated):
contract OpenAddressLottery{

address owner ;
u int pr ivate secretSeed ;
uint pr ivate lastReseed ;
uint LuckyNumber = 7 ;

funct ion forceReseed ( ) {
r equ i r e (msg . sender==owner ) ;

SeedComponents s ;
s . component1 = uint (msg . sender ) ;
s . component2 = uint256 ( blockhash . . ) ) ;
s . component3 = block . d i f f i c u l t y ∗ ( . . ) ;
s . component4 = tx . gaspr i c e ∗ 7 ;

reseed ( s ) ; // reseed
}

}

Of course, running lotteries on the blockchain is
painstakingly hard, as there is no trusted source of
randomness. In this particular case, the winner is decided
by checking if the combined hash of a number of block
variables and sender address equal the LuckyNumber 7.
An unsuspecting attacker can deploy another contract
that evaluates the number on the current block and
participates in the lottery only if it happens to be 7.
However, the lucky number unexpectedly changes to an
unattainable value when the owner calls forceReseed
since structs in solidity are defined in storage at pointer 0,
by default and overwrite the contract variables (Note how
cleverly the owner address remains unchanged). In order
to make the contract look vulnerable, the creator has also
‘hacked’ it using another account, before reseeding.

Honeypots like these can be avoided if one goes through
the pain of reproducing all the past transactions locally.
However, some other notorious contracts may only
be avoided if one has access to the whole blockchain
locally, for example by running a node. For example,
the clever CashOut function of Private Bank contract
that has appeared in many incarnations and tricked
many [1], essentially reverts some of the internal contract
calls when subject to re-entrancy attacks. This is made
possible by linking an external ‘logging’ contract, since

https://etherscan.io/address/0x741f1923974464efd0aa70e77800ba5d9ed18902#code
https://etherscan.io/address/0x95d34980095380851902ccd9a1fb4c813c2cb639#code


etherscan does not verify the bytecode of linked addresses.

In our work, we were able to produce a re-entrancy exploit
to the CdBank contract on the test-net, containing 20
ether. However, in order to check the exploit on the
main-net as well, we need to fork locally from a node
running on the network, which is an onerous task, given
that third party nodes provide only limited access to past
blocks.

VI. Mass Scanning with Pakala
To prepare for the mass scanning of smart contracts

on the blockchain, we have to extract all the contract
bytecodes. One way to do this would have been to run
a local Ethereum node and wait for it to synchronize with
the rest of the mining network. This would have meant
waiting for it to download nearly 60 GB of data and
then parse through all of it. Fortunately, there are public
Google Cloud datasets for many popular cryptocurrencies
including Ethereum. We decided to extract and scan
contracts that have non zero balances using the following
SQL query:
Select A. ∗ , B. eth_balance
from ’ bigquery−public−data . ethereum . contract s ’
A inner join
’ bigquery−publ ic−data . ethereum . balances ’
B on A. address = B. address
where B. eth_balance > 0

This query returned 473594 smart contracts with non-zero
balance which ended up being about 2 GB worth of JSON.

One complication with using Pakala is that it requires
a URL to an Ethereum node so it can perform necessary
RPC functions for retrieving the state of a contract on
the blockchain. Initially, this was handled by running
the Parity [11] mining software and using its local URL
for Pakala. This was unsustainable because the machines
running the scanners would run out of disk space trying
to download the entire blockchain. After switching over
to a third party node Infura [7], the scanners were able
to call the RPCs over the internet to the remote nodes.
The downside was that Infura limits free accounts to under
100000 requests a day.

The next step was to set up a python script that
can spawn instances of Pakala to scan a contract.
By running the command echo "0xdeadbeef" |
pakala - --exec-time 30 --analysis-time 30
--max-transaction-depth 5 -z, we can feed in
arbitrary EVM bytecode through stdin and specify
timeouts in seconds for the analysis and fuzzing. We
limit the transaction depth to 5 so that Pakala does not
consider any complicated changes to the contract’s state.
Sending multiple transactions involves setting up the
contract’s long-term memory a certain way to execute an
attack. The -z flag disabled concretization of symbolic
values which helped to cut back the analysis time. The
goal is to get through as many contracts as possible

in the limited time available, so we enforce these strict
parameters so the scanner does not hang on any one
contract for too long.

The JSON of bytecodes was split into 6 parts and
the scanner was run in 6 different processes on multiple
computers in order to make a dent in the massive amount
of contracts we scraped. The scanner was simply a python
script that opened new processes for each bytecode in the
JSON. When a Pakala process terminates, everything that
was sent to its stdout gets appended as a new line to an
output file. Each line of the output is marked with its offset
into the JSON for convenient lookup later. To locate an
identified bug, all you would have to do is open one of
the output files for a scanner, and do a search for the
string "Bug" because Pakala prints ”Bug Detected!” on
discovering a vulnerability. The following shows the code
for a single scanner feeding on one of the JSON files using
python subprocesses to fork instances of Pakala.
import j son
from subprocess import Popen , PIPE, STDOUT
import datetime

FILE_PATH = ” ./ data−000000000001”

counter = 0 # what index to s t a r t at

out = open( f ”output{FILE_PATH[ 2 : ] } . txt ” , ”a” )

with open(FILE_PATH, ” r ” ) as fp :
l i n e s = fp . r e a d l i n e s ( )

for i in range ( counter , len ( l i n e s ) , 1 ) :
out . wr i te ( f ”\nCOUNTER␣{ counter }” )

p = Popen ( [ ’ pakala ’ , ’− ’ , ’−−exec−time ’ , ’ 30 ’ ,
’−−ana lys i s−time ’ , ’ 30 ’ ,
’−−max−transact ion−depth ’ , ’ 5 ’ ,
’−z ’ ] ,

stdout=PIPE, s td in=PIPE, s tde r r=STDOUT)

p_stdout = p . communicate (
input=bytes ( j son . loads ( l i n e s [ i ] ) [ ’ bytecode ’ ] [ 2 : ] ,

”UTF−8” ) )

out . wr i te ( str ( p_stdout [ 0 ] ) )
counter+=1

out . c l o s e ( )

After running for 24 hours, the scanners burned
through 10887 contracts and detected 31 that were
vulnerable. One vulnerable contract at the address
0x70025b7a4eC0baF3aE48352FAe41c81B62ee992E with a
balance of 0.51778 Ethereum was detected to have a self
destruct bug. The Pakala output shows:

Symbolic execut ion f i n i s h e d with coverage 100%.
Outcomes : 84 i n t e r e s t i n g . 346 t o t a l and 0

unf in i shed paths .

Star t ing a n a l y s i s step . . .

https://ropsten.etherscan.io/address/0x79a03b08668477464d488256c5b48552df1f2968#code
https://etherscan.io/address/0x09746c14f8c98f225491bb5f93bcea3b6db636fc


Loaded 10 storage s l o t s from the contract
(non−exhaust ive ) . 0 non−zero .

Found s e l f d e s t r u c t bug .
Path :

Transaction 1 , symbolic s t a t e :
{
” s e l f d e s t ruc t_to ” : None ,
” c a l l s ” : [[ <BV256 0x20>,

<BV256 0x60>,
<BV256 0x24>,
<BV256 0x60>,
<BV256 0x0>,
<BV256 0 x f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

& ca l l da ta [ 0 ] _608_256 [ 2 2 3 : 0 ] . .
c a l l da ta [ 3 2 ] _609_32>,

<BV256 gas_601_256 − 0x61da >] ] ,
” storage_written ” : {<BV256 0x1>:

<BV256 ca l l da ta [ 3 6 ] _610_256>,
<BV256 0x0>:
<BV256 ca l l da ta [ 0 ] _608_256 [ 2 2 3 : 0 ] . .
c a l l da ta [ 3 2 ] _609_32 &
storage [<BV256 0x0>]_617_256>},

” storage_read ” : {<BV256 0x0>:
<BV256 storage [<BV256 0x0>]_617_256>},

”env ” : { ’ balance ’ : <BV256 0x128dfa6a90b28000 >,
’ c a l l e r ’ :

<BV256 0 x c a f e b a b e f f f f 0 2 0 2 f f f f f f f f f 7 c f f 7 2 4 7 c 9 >,
’ value ’ : <BV256 value_600_256 >},

” s o l v e r ” : { ’ const ra int s ’ : [
<Bool ! calldata_size_604_256 == 0x0>,
<Bool ca l l da ta [ 0 ] _608_256 [ 2 5 5 : 2 2 4 ]

== 0x7948f523 >,
<Bool s torage [<BV256 0x0>]_617_256 [ 1 5 9 : 0 ]

== 0x0>,
<Bool ca l l da ta [ 3 2 ] _609_32 == 0 xff7247c9 >,
<Bool ca l l da ta [ 0 ] _608_256 [ 1 2 7 : 0 ]
== 0 x c a f e b a b e f f f f f f f f f 0 2 0 2 f f f f f f f f f 7 c >,
<Bool CALL_RETURN[<BV256 0 x f f f f f f f f f f f f f f &
ca l l da ta [ 0 ] _12_256 [ 2 2 3 : 0 ] . .
c a l l da ta [ 3 2 ] _14_32>]_26_256 [ 1 5 9 : 0 ] ==
0xdeadbeef00000000000000000000000000000 >] ,

’ hashes ’ : {}} ,
}

Pakala works by identifying all branch instructions in
the bytecode and generates symbolic expressions that
satisfy the constraints of all indirect jumps. The point of
this is to maximize coverage of the subject contract by
hitting as many distinct paths of the control flow graph
as feasible with the allotted timeouts. At each possible
state of the contract, Pakala checks if it is possible for a
caller’s balance to be greater than it was before calling
the contract. This invariant check being true implies that
the caller was able to send an input to the contract that
transferred funds into the caller’s account.

As seen in the result above, Pakala was able to cover
100% of paths in this contract and found a self-destruct
bug. This means that it found one path where it was
able to call the self-destruct function on the contract
which forwards all remaining funds to the caller before
disabling the contract completely. Pakala uses the Z3 [4]
SMT solver to obtain concrete values from the symbolic

state that triggered this bug. In this case, the concrete
state tells us what bytes the calldata data structure
should contain at various indices in order to trigger this
bug. The storage_read and storage_written fields tell
us that the contract’s blockchain state must also be set
up in a particular way. We can experimentally verify this
self-destruct exploit if we can send a transaction with this
exact state to the contract

Unfortunately, Remix does not support interacting with
bytecode contracts, so it is difficult to dynamically analyze
what is going on at each instruction of the code. This
makes it infeasible to attempt exploiting this vulnerability,
or any of the other vulnerabilities reported by Pakala
unless we blindly send transactions to the actual contracts
on the Ethereum network. There exist EVM disassemblers
for seeing what the instructions of a contract are, but there
are no emulators or debuggers that allow a developer to
step through instructions and monitor the program state.
The closest thing to an emulator is the actual code that
is run by the Ethereum mining software when executing
a contract for a block. Parity’s evmbin is a compiled Rust
binary that implements the real EVM by taking bytecode
and outputting all the instructions along with the EVM
state at each program counter. This state includes the
current gas limit, stack, storage, and local memory values.
It may be possible to use this evmbin library as a base
for writing an EVM emulator or debugger that could then
allow us to construct the exploits previously mentioned.

VII. Fuzzing with Echidna
Fuzzing refers to the process of feeding random input

data to a program in order to potentially induce un-
desirable behavior. Sometimes the inputs are adaptively
chosen in order to maximize coverage. The existence of
unexpected behavior indicates the presence of a bug—
potentially an exploitable vulnerability. Echidna [3] is a
fuzzing tool for Ethereum smart contracts that checks
for the violation of assertions or user defined properties
(indicated using a special prefix). It simulates random
calls to various public functions in the contract from a
partially configurable set of senders. The user may specify
which functions to call and can also monitor the maximum
gas usage by each function. In case a property is violated,
a sequence of calls leading to the violation is outputted
(Echidna tries to shorten the violating sequence if possi-
ble). Echidna can thus detect several kind of elementary
bugs such as ones resulting from race conditions, integer
overflows, unintended self destruct, or uncontrolled gas
usage. For instance, consider the following (somewhat
contrived) contract that attempts to create a bank that
allows users to specify a minimum balance they want to
maintain. However, there is a bug in the balance check
for withdrawals that allows a user to induce an integer
overflow and thus withdraw around 264 wei while main-
taining minimal balance. To test this, we add a property
to check for inconsistent total deposit and withdrawal



amounts as shown. We also comment out the checks for
values and transfers to enable us to use default settings
for Echidna (this step can be eliminated by tweaking the
configuration parameters related to transaction values and
initial balance).
contract OverflowBank {

mapping ( address => uint64 ) publ i c balance ;
mapping ( address => uint64 ) publ i c minBalance ;
uint64 publ i c maxDeposit = 1e18 ;
uint64 publ i c maxBalance = 1e18 ;
uint256 publ i c to ta lDepos i t = 0 ;
uint256 publ i c totalWithdrawal = 0 ;

funct ion setMinBalance ( uint64 newMinBalance )
publ i c {

r equ i r e ( newMinBalance
<= balance [ msg . sender ] ) ;

minBalance [ msg . sender ] = newMinBalance ;
}

funct ion depos i t ( uint64 amount)
publ i c payable {

// requ i r e (amount <= msg . value ) ;
r equ i r e (amount <= maxBalance ) ;
r equ i r e (amount + balance [ msg . sender ]

<= maxBalance ) ;
balance [ msg . sender ] += amount ;
tota lDepos i t += uint256 (amount ) ;

}

funct ion withdraw ( uint64 amount) publ i c {
// Overflow bug
requ i r e ( balance [ msg . sender ]

>= minBalance [ msg . sender ] + amount ) ;
balance [ msg . sender ] −= amount ;
totalWithdrawal += uint256 (amount ) ;
//msg . sender . t r a n s f e r (amount ) ;

}

funct ion echidna_check_loss ( )
publ i c returns ( bool ) {

// No money i s l o s t
return ( totalWithdrawal <= tota lDepos i t ) ;

}
}

In this case, Echidna returns the call sequence
depos i t (103170786233548238)
setMinBalance (102246380585095486)
withdraw (18345214573411047223)

that does indeed induce the overflow. However, fuzzing
alone is ineffective against more subtle issues like re-
entrancy which might only be detectable if fuzzing is
integrated with runtime monitoring and/or static analysis
as some other tools attempt to do. Moreover, a lot of bugs
only manifest in rare edge cases, which are unlikely to be
detected using random inputs.

Since Echidna is primarily intended as a tool for testing
contracts, it requires a basic understanding of the code
in order to be utilized effectively. Few contracts include
assertions in the source and thus suitable properties need
to be devised and implemented. Although some generic

techniques such as checking ranges of balances and mea-
suring gas consumption usually apply, they alone are likely
to catch a vanishingly small number of bugs. Hence, the
attack needs to be tailored for each contract thereby
making Echidna unsuitable for large-scale vulnerability
detection. Therefore, for our purposes, we use the static
analysis tool Slither [6] to identify contracts which might
have detectable issues based on an analysis of source code
in order to narrow down the search. Note that Slither
is much more susceptible to false positives as compared
to Echidna as the latter produces an actual sequence of
calls in which the issue materializes. On the other hand,
this narrowing down significantly increases the rate of
false negatives. However, resource limitations compel us
to follow this strategy.

Slither only works on versions 0.4.x of Solidity greatly
limiting the number of contracts that can be scanned.
Among contracts with non-zero balance, Slither identi-
fied only a handful with potential bugs that could be
detectable using Echidna. Running Echidna on these as
well as a few randomly picked contracts revealed no
vulnerabilities despite several hours of effort. No critical
invariants were found to be broken and no functions took
up unusual amounts of gas. However, Slither alone is
capable of detecting a much larger class of errors such
as re-entrancy. For instance, Slither could have detected
the vulnerability that led to the DAO hack [6]. This raises
questions as to the practicality of using fuzzers since they
effectively only rule out false positives.

VIII. Conclusion
Although we could not exploit any vulnerable contracts,

we lay the groundwork for assessing new contracts through
a variety of open source tools. We would have initially
fallen for honeypot traps if we had been careless and used
Manticore to find vulnerabilities in verified source code.
Pakala worked to find trivial bugs and vulnerabilities in
bytecode by maximizing coverage and fuzzing inputs, but
applying its results usefully was difficult due to a lack
of EVM debugging capability. Echidna is a more precise
fuzzing tool than Pakala that uses information from source
code to find most of the common vulnerabilities discussed,
but both tools lack the ability to find re-entrancy bugs.
Slither can find re-entrancy bugs, but it has a high false
positive rate and does not give concrete inputs to trigger
such bugs.

An important next step in the black box analysis of
EVM bytecode is to develop a flexible debugger that can
step through instructions and insert breakpoints where
local memory and blockchain storage can be inspected.
This would make it easy to universally analyze contracts
the same as one would reverse engineer an x86 executable
file.

Clearly there are novel techniques consistently being in-
novated to analyze contracts where some are advantageous
over others in certain cases and vice versa. These tools can



be leveraged by developers to test their smart contracts
before initializing them on the blockchain, but in practice
it is recommended to instead use a method called ”formal
verification” as in the tool Securify [17]. We could not
analyze with Securify because it is a proprietary software.
Furthermore, formal verification is a tedious and expensive
process as it requires manually writing specifications for
the contracts to be tested. The alternative to formal
verification for writing secure smart contract code is to use
open source [12] libraries of contracts thoroughly vetted by
the community. For instance, you may copy from a library
that provides safe math functions where integer overflows
are prevented. Regardless, vulnerabilities in open source
libraries would compromise all the contracts that inherit
from them.
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