Public Key Neural Linguistic Steganography

Alexis Camacho Andrew Ulick
camachol@mit.edu aulick@college.harvard.edu
Quentin Wellens Catherine Yeo
qwellens@mit.edu cyeo@college.harvard.edu
Abstract

The field of linguistic steganography studies systems which are able to en-
code secret messages in existing cover texts themselves. The primary focus
of these systems is to provide users the ability to communicate encrypted
messages without an observer being able to detect their use of cryptography.
In this paper, we extend a neural steganography system to implement public-
key encryption methods. Our work allows users who have not previously
communicated secrets with each other to gain the benefits of steganography
and provides a construction that eases the pre-coordination requirements for
users while providing similar security measures.

1 Introduction

While cryptography focuses on the security and secrecy of communication, sometimes it is
not sufficient to keep the contents of a message secret. To keep the existence of the message
secret as well requires a different approach: steganography. Steganography is the technique
of concealing secret data within something in order to avoid detection from an adversary.
Examples of steganography implemented in practice have included physical steganography
(e.g. writing hidden messages on paper in invisible ink) [[1]], digital watermarking [2], and
concealing messages within visual images by adding noise [3]].

Steganography can be performed on textual messages as well. For example, a German spy
in World War II sent the following encoded text: “Apparently neutral’s protest is thoroughly
discounted and ignored. Isman hard hit. Blockade issue affects pretext for embargo on
by-products, ejecting suets and vegetable oils.” Taking the second letter of each word, we
decrypt the ciphertext to be the message “Pershing sails from NY June 1.” [4]]

With the rise of text-based information and media (i.e. email, text messages, social media
posts) being disseminated in today’s society, the importance of secure text communication
has increased as well. One channel of secure text communication is linguistic steganography,
which allows for individuals to hide the presence of the real message within another piece of
text [5]]. Thus, the presence of the embedded message cannot be easily found in the resulting
encoded text by anyone other than the intended recipient, thereby preserving confidentiality,
integrity, and availability of the original message. Neural linguistic steganography [6] takes
this approach further by using state-of-the-art neural language models to generate realistic
encoded texts while preserving security.

In this paper, we will apply a public key approach upon the technique of neural linguistic
steganography [|6]]. We will construct a framework of neural linguistic steganography that

allows for more flexible coordination requirements between Alice and Bob while maintaining
similar security.

2 Related Work

Related work can be divided into relevant literature on linguistic steganography and public-
key steganography.

2.1 Linguistic Steganography

Linguistic steganography, also known as natural language steganography or lexical steganog-
raphy, is a method of communication that hides a secret message within a message using
a cover text, which is also known as a context. Ideally, adversaries intercepting encrypted
messages would not even realize the existence of a hidden message. [5]]

There are two traditional methods of linguistic steganography: edit-based and generation-
based. Edit-based methods involve modifying the content of the cover text, such as substi-
tuting words in the cover text with synonyms. For example, the cover text “I like biscuits
with a cup of tea.” can be encoded with bit 1 to be transformed into “I like cookies with a
cup of tea.” because “biscuits” and “cookies” are synonyms. Alternatively, generation-based
methods involve using tokens to generate an encrypted message. [6]

Two approaches of generation-based linguistic steganography include block coding and
Huffman coding. In block coding, the message to be encrypted is split into multiple blocks,
each B bits long. The entire vocabulary V is split across 2!/ bins, each containing %
tokens. This acts as a look-up table, which is the shared key. For each block in the secret
message, the maximum-likelihood next token in the corresponding bin is selected by an
LSTM (a type of neural network) with a certain language model, which ensures that the
generated sequence of tokens resembles languages. In Huffman coding, an RNN (also a type
of neural network) is used to generate a set of k£ most likely next words in the sequence. A
Huffman tree is constructed based on their conditional probabilities, after which the binary
message to be encoded is used to traverse the tree until reaching a leaf, which is the word for
the encoding. For decoding, the reverse is performed using the same RNN.

A more efficient generation-based method applies arithmetic coding. The paper “Neural
Linguistic Steganography” [6]] created a new linguistic steganography technique based on
arithmetic encoding with large-scale neural language models. Arithmetic coding compresses
data to code strings of elements with known probability distributions; the conditional
probabilities of the next generated word are placed in concentric circles, and the algorithm
reads off tokens starting from the origin of the circle. Using the GPT-2 language model [7]],
these researchers found that this algorithm was better and more efficient that the baselines of
block and Huffman coding and that this algorithm fooled both human eavesdroppers and
statistical tests.

[NLS protocol in above paragraph is pasted from proposal, haven’t modified/added more
detail to yet]

2.2 Public-Key Steganography

In strengthening the security of steganography systems, previous literature has examined
the security and implementation of public-key steganography [8]]. The paper “Public-Key
Steganography” [8|] detailed a security analysis of a computationally secure public-key
steganography protocol and implemented it. The protocols examined not only included
encrypting/decrypting messages, but also the problem of key distribution.

The protocol encrypts a message using a public-key encryption algorithm that is IND$-
CPA secure, which requires the encryption output to be indistinguishable from uniformly
chosen random bits, and then encodes by a algorithm such that the output’s distribution is
indistinguishable from a “usual” distribution. The IND$-CPA secure encryption algorithm
can be constructed using the RSA algorithm [9]]. Additionally, the paper also outlines how to
distribute the public keys steganography, so that channels may be set up without arising any
suspicion. This protocol is essentially the EI-Gamal encryption system but modified so that
public generators are published steganographically.

3 Security

3.1 Message Security

Our proposed steganography system should have some defined security guarantees, similar
to the security guarantees in the field of cryptography (i.e IND-CPA, IND-CCA). Ahn and
Hopper purposed such security guarantees in [8]).

3.2 Choosen Hiddentext Attack Security

The equivalent of CPA-security in [§8] is CHA-security. Under this scenario an attacker,
Eve, has access to an steganographic encoding oracle. If Eve cannot differentiate between
steganographic and non-steganographic communication with this encoding oracle, we state
that the steganography system is CHA-secure [§]].

We would desire such a property since, like the CPA scenario, Eve can trick Alice or
Bob into encoding a message of her choice. Thus, we would like the system to preserve
concealment/evidence of a message.

First, we describe the steps performed by the encryption oracle:

e The language model ,/, and an invertible one-to-one mapping between words and
bits, f are fixed during pre-coordination.

e After receiving a message, m which is a string of words, turn m into bits by
application of the invertible mapping f

e We call the arithmetic coding of a message a, with a specific language model [,
Aj(a) and A;(a,init = A) to denote the same operation after having initialized the
language model with some state A.

e Return ¢ = A;(f(m),init = C) where C is a unique, randomly chosen covertext,
C € L where L is the language described by Py,

We next describe the steps performed by a decryption oracle:

e After receiving an encrypted communication, ¢, Calculate A~!(c,init = C) to
recover a string of bits. It is important to note that C' must be communicated
separately.

e Return m = f(A71(c,init = C))

We note that the pre-communication of C' for each message puts an extreme burden on the
usability of this scheme, by implying a preexisting communication channel.

To prevent against chosen hiddentext attacks, the message m should be encrypted with a
INDS$-CPA encryption algorithm then encoded using a steganographic encoding algorithm[8].
This method will provide CHA security, since the distribution of encoded random bits and
distribution of encoded encrypted messages are the same (this follows from IND$-CPA
guarantees). Thus, we propose to do the following:

Neural Steganography Encoding
S = Apn(Enc(f(m), P),init = C)

Neural Steganography Decoding
m = f~'(Dec((A;, (S, prar), Sk, init = C)))

Where Enc and Dec are operations in a IND$-CPA secure encryption scheme, Py, is a public
key , and Si, is a secret key.

We note that while the encoding and decoding process still rely on the previous symmetric
key, namely (A;,,, C, f) these may now be published freely as, by the IND$-CPA property
of (Enc, Dec), a full reversal of the steganography reveals no information.

3.3 Choosen Stegotext Attack Security

The equivalent of CCA-security in steganography is CSA security. Under this scenario an
attacker, Eve, has access to an steganographic encoding and decoding oracle. If Eve cannot
differentiate between steganographic and non-steganographic communication with these
oracles, we say the stego system is CSA secure [8]].

The neural steganography scheme proposed in [6] is not CCA secure. Eve can query Bob
with some encoded message using steganography and use her decoding oracle to check
whether Bob responded with steganographic message.

To provide security against this, we would want to have unforgeable signatures with every
steganographic message. Having these signatures will make Eve’s decoding oracle and
encoding oracle, useless. Eve will now have to forge Alices signatures if she wishes to
impersonate her. Therefore, our encryption schemes used before steganography should be
CCA-secure. Anh and Hopper’s paper provides a more detailed explanation and proof of
this kind of security. [§].

4 System Framework

4.1 Encryption

Our encryption framework is composed of two parts: encrypt then conceal. We interpret the
bit sequence (e.g. in UTF-8 encoding) corresponding to the message m as a number and
encrypt it using a public key, after which we convert the encrypted number to a fraction (by
dividing by the size of the domain). This fraction is used as the cumulative probability that
uniquely determines a sequence of words in our language model.

Before we use that fraction, however, we must populate the language model with the context,
to ensure that our covered message appears to be talking about a different topic. After
feeding the context into GPT-2 [7]], the model now has updated probabilities reflecting how
likely every word in the model is to be the next one. This naturally favors words in line with
the main topic of the context. We can then use these updated probabilities to build a tree
(or populate a circle as in [6]]) of possible texts, each with their own probability. By reading
the tree in a fixed way, every text now falls somewhere on the cumulative distribution. The
fraction interpreted as a cumulative probability now uniquely maps to a certain text, which is
our encrypted cover text.

4.2 Decryption

Our decryption framework is similarly composed of two parts: deconceal and decrypt. Once
again, the language model is populated with the context message and the tree of cumulative

4

probabilities of next words is built. By reading the cover text off the tree, the decoder
recovers the fraction. The decoder then converts the fraction back to the encrypted number,
and uses the secret key to decrypt that into the number representing the original bit sequence.
The bit sequence can then be decoded (e.g. using UTF-8) into the message.

4.3 Example

Here, we will illustrate an example of our proposed steganography system in practice,
specifying each step of the protocol in detail.

Step 1: Choose a context and populate the language model probabilities using the context.

Let us choose our context to be “Color (American English), or colour (Commonwealth
English), is the characteristic of visual perception described through color categories, with
names such as red, orange, yellow, green, blue, or purple. This perception of color derives
from the stimulation of photoreceptor cells (in particular cone cells in the human eye and
other vertebrate eyes) by electromagnetic radiation (in the visible spectrum in the case of
humans).”, which is taken from the Wikipedia page for “color” [[10].

Step 2: Convert our message into unicode bit representation.

Let our message simply be hello. Then, the corresponding binary representation of our
message is 01101000 01100101 01101100 01101100 01101111,

Step 3: Encrypt our bit sequence message using a public-key scheme (RSA).

When placed together, our bit sequence 0110100001100101011011000110110001101111
becomes 448378203247 in decimal representation. Using RSA, we encrypt this to be
left-pad(448378203247)¢ mod p.

Step 4: Convert our resulting value to a fraction.
From un-left-pad(448378203247)¢ mod p we get a fraction 0.6340285.

Step 5: Using our populated language model and our fraction, we generate the encrypted
ciphertext.

We find that our encrypted textis Green is a beautiful color.

5 Discussion and Future Work

There are several directions for future work. It would be great to run a user study with our
system to test whether actual human individuals can detect the presence of encoded messages
in our proposed communication system. Another potential direction of future work is to
modify this system to work with other language models, such as BERT [11]], XLNet [12],
and RoBERTa [13]], and compare results among these systems.

Additionally, a related domain we’d like to explore further relates to security attacks on
linguistic steganography and what attacks may be possible on our own system. Natural
language steganalysis [14]] is an emerging field and looking into how to address security
weaknesses would make our system stronger.

Acknowledgments

We thank the course staff of 6.857 for providing helpful feedback and support.

References

[1]

[10]
[11]

[12]
[13]

[14]

K. Chandra Sekhar, M. Chandra Sekhar, and K. Chokkanathan. “Steganography:
A Security Model for Open Communication”. In: International Journal Advanced
Networking and Applications (2013).

Ingemar Cox et al. Digital Watermarking and Steganography. 2nd ed. Morgan Kauf-
mann, 2007. ISBN: 0123725852.

T. Morkel, Jan H. P. Eloff, and Martin S. Olivier. “An overview of image steganogra-
phy”. In: (2005).

David Kahn. The Codebreakers: The Comprehensive History of Secret Communication
from Ancient Times to the Internet. Scribner, 1996. ISBN: 06848313009.

Ching-Yun Chang and Stephen Clark. “The Secret’s in the Word Order: Text-to-
Text Generation for Linguistic Steganography”. In: (Dec. 2012), pp. 511-528. URL:
https://www.aclweb.org/anthology/C12-1032.

Zachary M. Ziegler, Yuntian Deng, and Alexander M. Rush. “Neural Linguistic
Steganography”. In: Empirical Methods in Natural Language Processing (2019).
Alec Radford et al. “Language models are unsupervised multitask learners”. In:
OpenAl Blog (2019). URL: https : //cdn . openai . com/ better - language -
models/language_models_are_unsupervised_multitask_learners.pdf.
Luis von Ahn and Nicholas J. Hopper. “Public-Key Steganography”. In: (2003). URL:
https://www.cs.cmu.edu/ biglou/pubkeystego.pdfl

Ron Rivest, Adi Shamir, and Leonard Adleman. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”. In: Communications of the ACM 21
(1978).

“Color”. In: Wikipedia (2020). URL: https://en.wikipedia.org/wiki/Color.
Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: NAACL (2019).

Zhilin Yang et al. “XLNet: Generalized Autoregressive Pretraining for Language
Understanding”. In: Advances in Neural Information Processing Systems 32 (2019).
Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”.
In: International Conference on Learning Representations (2020).

Roshidi Din, Azman Samsudin, and Puriwat Lertkrai. “A Framework Components for

Natural Language Steganalysis”. In: International Journal of Computer Theory and
Engineering 4 (2012).

https://www.aclweb.org/anthology/C12-1032
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.cs.cmu.edu/~biglou/pubkeystego.pdf
https://en.wikipedia.org/wiki/Color

	Introduction
	Related Work
	Linguistic Steganography
	Public-Key Steganography

	Security
	Message Security
	Choosen Hiddentext Attack Security
	Choosen Stegotext Attack Security

	System Framework
	Encryption
	Decryption
	Example

	Discussion and Future Work

