
Massachusetts Institute of Technology Handout 3
6.857: Network and Computer Security February 18, 2020
Professors Ronald L. Rivest and Yael Tauman Kalai Due: March 2, 2020

Problem Set 2

This problem set is due on Monday, March 2, 2020 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate PDF. When submitting the problem in Gradescope, ensure that all
your group members are listed on Gradescope, and not in the PDF alone.

You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign
the groups for the problem set. After problem set 3, you are to work on the following problem sets with
groups of your choosing of size three or four. If you need help finding a group, try posting on Piazza or email
6.857-tas@mit.edu. You don’t have to tell us your group members, just make sure you indicate them on
Gradescope. Be sure that all group members can explain the solutions. See Handout 1 (Course Information)
for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must be provided as a separate pdf.
Mark the top of each page with your group member names, the course number (6.857), the problem set
number and question, and the date. We have provided templates for LATEX and Microsoft Word on the
course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Our department is collecting statistics on how much time students are spending on psets, etc. For each
problem, please give your estimate of the number of person-hours your team spent on that problem.

Problem 2-1. Side-Channel attack on AES

An attacker can use “side-channel” information to obtain a secret AES key.

We set up a server to simulate this type of side-channel attack. Our server encrypts random strings using
AES with a secret key k. As a side-channel vulnerability, there is a slight delay whenever the number of 1
bits exceeds the number of 0 bits in the XOR outputs during each encryption (i.e. counting only the outputs
of the XOR’s when some round key is XOR-ed with the current state). The time is measured by the server
and is part of the data given by the server.

If you query https://courses.csail.mit.edu/6.857/2020/6857_aes.php you will receive a (16 bytes
(128 bits) of plaintext, 16 bytes of ciphertext, float value of time in seconds) triples. You can batch queries
by including a ’num’ parameter in the query, e.g. https://courses.csail.mit.edu/6.857/2020/6857_

aes.php?num=100 gives you 100 lines of tuples. The maximum number of queries per batch is capped to
1500. While you can make requests to the server many times, try to store the triples generated and other
relevant information so as not to overload the server with requests.

The plaintext and ciphertext are printed as space-separated byte values in decimal; and the plaintext,
ciphertext, and time leak are comma-separated. The line is ended with a semicolon.

You may find useful the NIST AES specification in this problem: http://csrc.nist.gov/publications/

fips/fips197/fips-197.pdf.

We have provided a locally runnable implementation in the files server.py and aes.py. The aes.py code
contains the side-channel leak. Feel free to play with it on your local machine. It is not necessary to solve
the problem, and is just there for reference.

(a) Let X be a random variable that is the total number of heads in t independent coin-flips of a fair
coin, and let Y be another independent random variable that counts the number of heads in t coin
flips, and then adds one. Suppose t is known.

6.857 : Handout 3: Problem Set 2 2

Suppose Z is either
⌊

X
t/2

⌋
or

⌊
Y
t/2

⌋
, but you don’t know which. How many draws of Z do you expect

to need, in order to determine with reasonable reliability (for example, guesses correctly 99% of the

time) whether Z is
⌊

X
t/2

⌋
or

⌊
Y
t/2

⌋
? (Note: an approximate bound should be good enough here, just

make sure to state your assumptions.)

(b) Describe an algorithm for recovering the AES key k given the AES side-channel information described
above. (Hint: try using the result of part (a) on the first bit of the first round key. What is t?)

(c) Recover the secret key k. Submit any code you used.

(d) How many (plaintext, ciphertext) tuples did your attack require? (Note that even when your attack
seems to recover almost all the keybits correctly, it may still get one or two key bits wrong, which will
result in an incorrect decryption of a ciphertext. Please report the number of plaintexts for which
your algorithm has a good chance of outputting all key bits correctly.)

Problem 2-2. Hash Functions

Let’s review some hash function properties and prove some useful facts about them.

Recall that a hash function h : {0, 1}n → {0, 1}d is one-way if you are given a y = h(x) for a random
x ∈ {0, 1}n, it is computationally infeasible to find any x′ ∈ {0, 1}n such that y = h(x′).

Such a hash function h (or a family of such hash functions) is said to be collision resistant if given the
description of h it is hard to compute two different inputs x1, x2 ∈ {0, 1}n such that h(x1) = h(x2).

(a) Suppose that h1 : {0, 1}n → {0, 1}d is a collision resistant hash function. Does it imply that h2 :
{0, 1}n−d×{0, 1}n → {0, 1}d is also collision resistant, where h2 is defined by h2(x, y) = h1(x||h1(y)),
for x ∈ {0, 1}n−d and y ∈ {0, 1}n? Provide a proof or a counter example.

(b) Suppose that h1 : {0, 1}n → {0, 1}d is a collision resistant hash function. Does it imply that h2 :
{0, 1}2n → {0, 1}d is also collision resistant, where h2 is defined by h2(x) = h1(x2||x4|| . . . ||x2n), for
x = (x1, . . . , x2n) ∈ {0, 1}2n? Provide a proof or a counter example.

Problem 2-3. Message Authentication Codes

In this problem we explore the CMAC construction and its variants, and explore general encryption and
authentication mechanisms.

(a) Recall that CMAC uses a CBC mode of operation for encrypting the message and a fresh key for the
last block. Then, the output is the last ciphertext block. In addition, IV is set to 0.

1. Show that CMAC is not secure if we use the same key for all blocks (including the last one).

2. Suppose we use two different keys with a different key for the last block, but we let the IV be
random (i.e. IV can vary). Is the MAC secure now? Show why or why not.

(b) Consider the following MAC scheme: a message M is hashed and the resulting value h(M) is passed
through an ideal block cipher Ek. The result, Ek(h(M)) is used as the MAC. Under what properties
of the hash function is this MAC scheme secure? Or is it insecure no matter which hash function is
used?

(c) Suppose the same key is used for all the blocks (including the last one), and assume that all messages
are of fixed length L (for simplicity, you can think of L as corresponding to two blocks in the CMAC
scheme). Namely, the adversary has access to an oracle that generates MACs of messages of length L
and the adversary breaks the scheme if they manage to produce a MAC of a new L-bit message.
Sketch an argument of why the scheme is secure.

