
Adversarial Password Cracking
Suman Nepal, Isaac Kontomah, Ini Oguntola, Daniel Wang

Department of Electrical Engineering and Computer Science, MIT
Cambridge, MA

{nsuman, kontomah, ini, dwq}@mit.edu

Abstract—Password generation is a very common secu-
rity issue. Users are faced with the problem of choosing
good passwords and trying to make sure that the password
they choose is as robust as possible. In this project, we
train a generative adversarial network with a generator
that tries to generate guesses to break a password scheme
and a discriminator that tries to prevent the generator
from generating a guess that breaks the password security
scheme. We try to compare this scheme to Hashcat and
also evaluate the strength of our adversarial system using
zxcvbn, a low budget password estimator developed by
Dropbox engineers. We also compare the effect of creating
an extended dataset based on random permutations and
language rules on the guessability of user passwords.

I. INTRODUCTION

Generating passwords that are robust to attacks is
still a major security concern. In an ideal situation,
passwords are chosen completely randomly and are not
easily cracked without compromising the underlying
encryption scheme or some other weak point other than
the passwords themselves. However, users tend to pick
passwords that are easy for them to remember, which
can drastically reduce the search space for a potential
adversary.

Many password systems cracking systems take ad-
vantage of this human tendency via dictionary attacks,
which attempt to match the hash of a given password
from a list of commonly used passwords, with some
success. More sophisticated systems can function based
on a set of rules of language and grammar to expand
the adversary search space beyond a fixed password list.
However, these systems are still primarily based on a set
of rules of language and grammar, so when a user sets
a password outside of these rules it becomes harder to
crack.

This paper explores password cracking with PassGAN
[1]. The main idea behind PassGAN is to try to check
the robustness of user passwords by using a generative
adversarial network. The generator and discriminator act
in a cat and mouse manner where the generator tries to
generate fake passwords and make fool the discriminator

to think they are real passwords. PassGAN replaces rule-
based password guessing, and also password guessing
based on data-driven Markov decision systems, with a
adversarial methods using deep learning. This is done
by training a neural network to determine password
attributes autonomously, and using the knowledge of user
password attributes to learn and mimic the distribution
of previous passwords. The advantage that deep neural
networks hold is that they can be trained without any
a priori knowledge of any properties and structures of
user password choices. This makes deep networks more
efficient as compared to Markov models which implicitly
assume that all relevant password characteristics can
be defined in terms of n− grams, and rule-based ap-
proaches which can guess only passwords that match
with the available rules. As a result, samples generated
using a neural network are not limited to a particular
subset of the password space. Instead, neural networks
can autonomously encode a wide range of password-
guessing knowledge that includes and surpasses what
is captured in human-generated rules and Markovian
password generation processes.

In this work we reproduce the results from [1], as
well as experimenting with alternate models of Pass-
GAN trained on different or modified password lists.
In addition, we analyze the strength of our models’
generated passwords via zxcvbn [2]. Finally, we derive a
probabilistic model for an alternative password strength
checker based off of our trained PassGAN models.

II. PRIOR WORK

Two widely used password guessing tools in use
today are John the Ripper and HashCat, which expand
on dictionary attacks by creating rules for password
transformations. John the Ripper offers a standard dic-
tionary attack, with password expansion rules based on
behaviour in choosing passwords seen in user accounts
from leaked databases. HashCat also offers a similar
dictionary attack, but uses a distributed approach across
GPUs for its implementation. In this work we primarily

use HashCat for comparison with neural-network based
adversarial approaches.

Unfortunately, both John the Ripper and Hashcat
exploit common password patterns that are hard-coded
based on the developer’s discretion, which includes
analyzing the password structure. What if we use deep
learning and have the machine learn the nuances and
patterns from scratch, and perhaps pick up more sophis-
ticated password patterns that humans don’t notice?

One of said approaches is from Melicher et. al. [6],
who used neural networks to model password strength,
and were able to so effectiveness comparable to state-
of-the-art. Another machine learning based approach
to password guessing is PassGAN [1], which is the
focus of this paper. PassGAN uses generative adver-
sarial networks (GANs) to generate likely passwords,
and achieves results comparable to standard password
guessing tools such as John the Ripper and HashCat.
Others have also obtained promising results using other
deep learning approaches such as LSTMs [7] [8] [9].

III. PASSGAN

A. Generative Adversarial Networks

PassGAN is an example of what are called generative
adversarial networks (GANs) [3]. GANs are essentially
an adversarial framework of multilayer perceptrons made
up of a generator and discriminator. To learn the gener-
ators distribution pg over data x, one defines a prior on
input noise variables pz(z), then represent a mapping
to data space as G(z; θg), where G is a differentiable
function represented by a multilayer perceptron with
parameters θg . One also defines a second multilayer
perceptron D(x; θd) that outputs a single scalar. D(x)
represents the probability that x came from the data
rather than pg . One then trains D to maximize the
probability of assigning the correct label to both training
examples and samples from G. We simultaneously train
G to minimize log(1−G(z)).

This can be though of as D and G playing a two-
player minimax game with value function V (G,D). We
optimize the objective value function by solving the
equation:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]

+ Ez∼pz(z)[log(1−G(z))]
(1)

B. How PassGAN Works

The generator network tries to generate samples from
the same distribution as that of its training set S =

Fig. 1: Residual Block

Fig. 2: PassGAN architecture

{x1, x2, ..., xn}. Generative modeling relies on closed-
form expressions that usually cannot capture the nui-
sance of real data. PassGAN trains a generative deep
neural network G that takes as input a multi-dimensional
random sample of passwords that is formed into a
Gaussian or uniform distribution) to generate a sample
from the desired distribution target password distribu-
tion. GANs transform the density estimation problem
into a binary classification problem, in which the learn-
ing of the parameters of G is achieved by relying on
a discriminator. The discriminator tries to prevent the
generator from generator from generating a password
distribution similar to the target password distribution
while the discriminator tries to generate a fake password
distribution and try to fool to discriminator to think it is a
real distribution. They both end up playing the minimax
game in equation (1) and optimize the value function
V (G,D) for the password distributions.

C. Architecture of PassGAN

The PassGAN is build up of several residual blocks
each of which 1D convolutional blocks connected by
identity short connection. The PassGAN generator has
a reshape node followed by five residual nodes, one 1D
convolutional node which outputs to the softmax node
to generate probability distribution in the character set.
The discriminator performs the same operations as the
generator but in an opposite order as we can see in the
Fig. 2. The generator will be initialized with random
noise does not use training data set except for gradient
update. The discriminator takes both fake and real inputs,
processes the forward pass and computes gradient to
optimize equation 1.

2

IV. TRAINING THE NETWORK

A. Sampling data

The RockYou data set contains a total of 31 million
passwords among which 14 million are unique. We think
the using the whole of the dataset is computationally
intensive for this project and decided to uniformly sam-
ple 2.5 million passwords from the original 31 million
passwords. This would ensure the distribution of the
passwords will remain the same as the original distri-
bution. We further restricted the length of the passwords
to be less than or equal to 10 in order to make the
training computationally feasible and ensure uniformity.
The passwords with length less than 10 were padded.

We sampled additional 2.5 million passwords that
were not included in the training samples in order to
test the network output.

B. Training

The network was trained in a GPU accelerated ma-
chine for 70k iteration with batch size of 256. The
training time was about 12 hours. The Jensen-Shannon
divergence measure was plotted between the output
distribution and real distribution as loss measure during
training.

Fig. 3: Training Loss

C. Evaluation

For the evaluation of the trained network, we sampled
5 million passwords from the generator network and
compared it’s output the test data set we created above.
About 274965 (5.5%) generated passwords were found
the test set we chose earlier, and among them 63110 of
them were unique.

Similarly we also tested generated password with the
32 million passwords leaked from the Ashley Madison
website. This data set was not seen by the model at all.
Again the accuracy rate was similar to the RockYou data
set with 4.5% of the generated passwords present in the
Ashley Madison passwords.

V. ACCURACY OF PASSGAN BETWEEN INITIAL
DATASET AND RANDOM PERMUTATION OF DATASET

We found the the RockYou dataset included a signif-
icantly large amount of passwords that were essentially
single words, like “password” or “football”, so to expand
that dataset into a more realistic set of passwords,
ones that include slightly modified variations, such as
“password1” or “p@s$w0rd”. To address this concern,
We wrote a Python program to randomly generate these
variations.

The first issue that we need to address is the following:
How can we accurately determine, through human obser-
vation, password variants for a simple existing password?
One way would be to observe some more complex pass-
words via the RockYou dataset, and find certain patterns
exhibited in a significant portion of these passwords. For
example, we found that many users append a number
to the end of their password, most commonly a single
digit, or a 2/4 digit number, assumed to be a birthyear.
Others substitute some words with l33t speak, which is
substituting certain letters with symbols that resemble
the replaced letter (like the “p@s$w0rd” example above).
We enumerate these examples and observe the frequency
of these patterns in the wild. That way, given enough
samples, we can use the same probabilities to generate
a whole new batch of altered passwords.

Our python program takes a common password as an
input and n as the second input. From that, the function
generates n slightly altered passwords from the original.
If we run this function for every input password in the
RockYou dataset, we can potentially get 20 times as
much passwords for our new input dataset.

We did the training again in the similar fashion as
the original dataset and got very similar results. The
percentage accuracy only changed by 0.3 percentage
points (upto 5.8%) on the RockYou and 0.2 (upto 4.7%)
percentage points in the Ashley Madison dataset. This
might be because of our constrained computational re-
sources for training the big model for too long (generally
about couple of days) and the enormous size of the data
(possible to train in a PC only a sample of it). We then
turn to analyze the strength of true passwords and the
passwords generated by the GAN.

3

VI. EVALUATING PASSWORD STRENGTH WITH
ZXCVBN

Using the cracked passwords from training with Pass-
GAN, we try to evaluate using zxcvbn, how hard these
passwords passGAN cracked are to crack. zxcvbn [2]
is a low-budget password strength estimator developed
by Daniel Lowe Wheeler of Dropbox. Using leaked
passwords, zxcvbn compares its estimations to four
modern guessing attacks which are accurate and conser-
vative at low magnitudes, suitable for mitigating online
attacks. zxcvbn is a password strength estimator inspired
by password crackers. Through pattern matching and
conservative estimation, it can recognize and weighs
30000 common passwords, common names and sur-
names according to US census data, popular English
words from Wikipedia and US television and movies,
and other common language patterns and permutations
such as dates, repeats (aaa), sequences (abcd), keyboard
patterns (qwertyuiop), and l33t speak. With zxcvbn,
we get to know the estimated guesses required to crack
a password, and the order of magnitude of the guesses
required. The four main criterion zxcvbn uses which are
based on the common password cracking schemes used:

• Online Throttling 100 per hour: An online attack
on a service that rate limits password authorization
attempts.

• Online no throttling 10 per second: An online attack
on a service that does not rate limit.

• Offline Slow Hashing 104 per second: An offline
attack which assumes multiple attackers with user-
unique salting and a slow hash function. Uses
a moderate work factor such as bcrypt, scrypt,
PBKDF2.

• Offline Fast Hashing 1010 per second: An offline
attack that uses a user-unique salting and a fast hash
function like SHA-1, SHA-256 or MD5. Number of
guesses per second ranges one billion to one trillion.
Rate limiting means zxcvbn limits the amount of
time an attacker can try to compute a given pass-
word before being denied access to trying to input
any passwords.
Cryptographic salting is the addition of random bits
to each password instance before its hashing. Salts
create unique passwords even in the instance of two
users choosing the same passwords. Salts help in
mitigate rainbow table attacks by forcing attackers
to re-compute them using the salted hash functions.

A formalization of what an attacker knows is based on
a heuristic search that follows the equation below:

argminS∈SD
|S|−1 + S!

∏
m∈S

m · guesses (2)

Where |S| is the length of the sequence, D is a constant.i
If an attacker knows the pattern sequence with bounds
on how many guesses needed for each pattern, the

∏
term denotes the number of guesses required in the worst
case. The |S|! term helps the guesser now know the
number of patterns in the sequence but not the order. If
the password contains a common word c, an uncommon
word u, and a date d, there are 3!Z possible orderings to
try: cud, ucd, duc,.The D|S|1 term attempts to model a
guesser who has no information on the length of the pat-
tern sequence. Before attempting length−|S| sequences,
zxcvbn assumes that a guesser attempts lower-length
pattern sequences first with a minimum of D guesses
per pattern, trying a total of

∑|S|−1
l=1 ≈ D|S|−1 guesses

for sufficiently large D.
The zxcvbn algorithm then returns a an integer strength
bar from 0− 4 with the following rules:
• Too guessable: risky password, guesses < 103.
• Very guessable: protection from throttled online

attacks, guesses < 106.
• Somewhat guessable: protection from unthrottled

online attacks, guesses < 108.
• Safely unguessable: moderate protection from of-

fline slow-hash scenario, guesses < 1010.
• Very unguessable: strong protection from offline

slow-hash scenario, guesses ≥ 1010.
After training on the passwords on the passGAN deep
network, we then try to evaluate how hard on average
the passwords cracked by passGAN are to guess using
another independednt password evaluator, zxcvbn.

Below are the average scores, guesses and log
guesses for the original RockYou dataset and the
extended RockYou dataset.

Data Avg. Score Avg. Guesses Log Guesses

RockYou 1.5925 5.32× 106 6.2561
Ext RockYou 1.5561 6.8× 107 6.166

From the results, we see that the extended RockYou
dataset in which we added more random variations and
permutations to the passwords has a lower average score
than the original RockYou dataset, we can then infer
that the random permutations made it harder to crack
passwords which makes because with more random

4

permutations that do not follow any rules of grammar
or language models, it becomes harder to guess the
passwords.
Below throttling and hashing parameters for the original
RockYou dataset and the extended RockYou dataset.

Data Throt/hr Throt/Sec FastHash SlowHash

RockYou 5.3× 109 1.9× 1012 5.3237 5.3× 106

E. RockYou 6.8× 106 2.5× 109 0.0068 6.8× 103

CDF of Original RockYou

CDF on extended RockYou

Fig. 4: CDF of Scores on RockYou and Extended Rock-
You

Average Scores on guesses on datasets

Average Attacks on datasets

Fig. 5: Average Scores,guesses and attacks on datasets

Scores on datasets

5

Guesses on datasets

Fig. 6: Scores and guesses on datasets

From the results for the original RockYou and extended
RockYou datasets, we see that the average score for
the RockYou dataset is lesser than the average score
for the extended RockYou dataset, this follows what we
expect because we incorporate a lot of intricacies into
the extended RockYou dataset which should make it a
bit more harder for attackers to guesses the passwords
rightly because the passwords get more and more random
with more permutations being added. Logically, that
means we should also expect the number of guesses
on average that attackers need to make on the extended
RockYou data set to be larger than the average number of
guesses needed on the original RockYou dataset. Which
the results from the zxcvbn confirm.

VII. PASSWORD STRENGTH CHECKER WITH
PASSGAN

Like the zxcvbn, we can similarly use PassGAN
for analyzing how strong a given password is. We can
define the strength of password as how many passwords
the Passgan generates before it outputs the desired
password. A simple measure of strength of password
will be how long it takes for the PassGAN to guess
the password. It will be computationally expensive and
impractical to run PassGAN until it outputs password
(if it ever does). But we can use a probabilistic model
in order to guess that number. The probability to guess
the certain password by the PassGAN is the product
of probabilities of each character from the conditional
posterior distribution. The softmax output of PassGAN
acts as posterior distribution over character set. We
assign the difficulty score to the password -log of base
10.

Algorithm 1: Get prediciton probability
Result: score
Input : password, model, charmap,;
prob = 1;
for char in password do

char prob = model.getProbability(char);
prob = prob × char prob

end
score = -log(prob)

From the zxcvbn library, we can get benchmark of
how many guesses (output number) it takes to brute force
a password. We checked our score with log of zxcvbn
output number. The correlation coefficient for our scores
and the zxcvbn output number for the first 5000 frequent
passwords was 0.26 and for 63000 matched password
was 0.17.

ACKNOWLEDGMENTS

We would like to thank the 6.857 staff at MIT for
their instrumental guidance and feedback throughout this
project.

REFERENCES

[1] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Pass-
GAN: A Deep Learning Approach for Password Guessing,”
arXiv:1709.00440v3 [cs.CR], Feb 2019.

[2] D. L. Wheeler, zxcvbn: Low-Budget Password Strength Estima-
tion, Proceedings of the 25th USENIX Security Symposium, Aug
2016.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Ad-
versarial Networks,”. arXiv:1406.2661v1. Jun 2014.

[4] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein GAN”,
arXiv:1701.07875v3 [stat.ML], Dec 2017;

[5] L. Castro, H. Lang, S. Liu, C. Mata. Modeling Password
Guessing with Neural Networks, https://courses.csail.mit.edu/6.
857/2017/project/13.pdf, May 2017.

[6] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N.
Christin, and L. Faith Cranor, ”Fast, Lean, Accurate: Modeling
Password Guessability Using Neural Networks”, 2016.

[7] Y. Liu, Z. Xia, P. Yi, Y. Yao, T. Xie, W. Wang, and T. Zhu, GEN-
Pass: A General Deep Learning Model for Password Guessing
with PCFG Rules and Adversarial Generation, IEEE, 2018.

[8] C. Olsen, A Machine Learning Approach to Predicting Pass-
words, 2018.

[9] I. Xu, C. Ge, W. Qiu, Z. Huang, Z. Gong, J. Guo, and Hui-
juan Lian. Password guessing based on Lstm Recurrent Neural
Networks, 2017.

6

