
Security in the Face of Censorship

Melanie Chen, Lauren Clayberg, Helen Li

Massachusetts Institute of Technology
melchen@mit.edu, clayberg@mit.edu, li helen@mit.edu

Abstract
While as United States citizens, we are not often impacted by
censorship of our private communications, the same is not true
for citizens of other countries. This paper follows our explo-
rations of how censorship is executed through the application
WeChat on Chinese citizens, and then our forays into strate-
gies to combat censorship. Due to the lack of WeChat devel-
oper resources provided to non-Chinese citizens as well as more
newly registered users of WeChat, we explored other poten-
tial solutions to both forcing end-to-end encryption and evading
the basic censorship filters used on WeChat messages through
steganography. We developed several proof of concept proto-
types for local implementations, integrations with Slack, and a
Google Chrome extension for enforcing end to end encryption.
Furthermore, we also did a survey of different steganography al-
gorithms and discussed the societal impact of these algorithms.
Index Terms: Steganography, Censorship, Encryption,
Surveillance, WeChat, Slack, Chrome Extension, Least Signifi-
cant Bit Substitution

1. Introduction
Although in most democratic countries governments must ob-
tain legal documentation and permission through courts in or-
der to access private data on social media apps and websites,
no similar checks exist in China. [19] However, WeChat has
risen to dominate life in China to a degree that any form of cen-
sorship would provide the censors with immense amoutnts of
information about Chinese citizens. Not only do people com-
municate with their friends, families, and colleagues from work
on WeChat, but WeChat has also become a primary method
of payment. [11] Furthermore, it is widely known that Chi-
nese government censors communication on social media and
has removed posts and blocked messages from being sent based
on their text-based and image-based filters for any content that
could be deemed as ”safety threats. [19] This kind of censor-
ship is only enabled by the lack of end-to-end encryption for
any communication on the app. Furthermore, although WeChat
has published an API with which developers can build upon the
WeChat platform, the community of developers using this API
has little to no public online presence, and there is even less doc-
umentation in regards to the actual system design of WeChat.
There have been a few papers published analyzing the system
design of WeChat, however a security analysis of WeChat has
yet to be published. [7] In this project, we had originally aimed
to implement end-to-end encryption for WeChat to provide an
alternative method for WeChat users to securely communicate
on the application to evade censorship, however due to the lack
of thorough documentation, heavy restrictions on permissions
for foreign developers to develop mini-programs (WeChat’s
versions of applications or extensions hosted on the platform),
and the deprecation of even WeChat’s web client, we chose to
pivot instead to provide alternative methods for people to evade
censorship in their communications online. So, we developed

a local implementation of end-to-end encryption, an integration
of key exchange and encryption through the Slack API, and a
Chrome extension to produce secure Facebook Messenger ses-
sions. In addition, we also survey methods of steganography
and discuss the societal impact that these algorithms can have
for both countries like the United States of America, and also
countries like China.

2. Cultural Impact of Censorship
In this section, we will explore the extent to which the cur-
rent state of government surveillance and censorship provoke
a sense of urgency to find and implement more secure methods
of communication.

2.1. Government Surveillance

After the 2013 case of Edward Snowden stealing approximately
1.7 million documents from the NSA and revealing the se-
cret NSA programs conducted against its own citizens and for-
eign leaders/targets, an issue of government surveillance was
raised. Snowden leaked information about how telecommuni-
cation data (phone calls, text messages, etc.) can be passed over
to the government. NSA secret program, PRISM, was also un-
veiled. This program supposedly provided the government with
direct access to data from major technology corporations such
as Apple, Google, and Facebook. While these companies de-
nied that the NSA set up back doors to their systems, we see
the importance of encryption of user data and communication
within these companies. [21] However, although Snowden’s
leak became an international scandal and infuriated communi-
ties around the world that objected to this invasion of privacy,
this leak only revealed surveillance of citizens’ communication.
In reality, government surveillance crosses yet another line in
other countries to censor private communications.

2.2. Censorship Example

Security vulnerabilities have allowed the Chinese government
to censor messages they deem as a threat. As seen in Figure
1 (top right), the fifth and sixth messages were not sent, but
there were no clear indications of this censorship to either party.
Given the large user base that WeChat has, security is shown to
be crucial in the face of government censorship.

In 2018, WeChatSCOPE, a research project at the Univer-
sity of Hong Kong, studied the impact of censorship in China.
The project tracked more than 4,000 public accounts that cov-
ered news in WeChat, and of 1.04 million articles, 11,000 were
removed by WeChat. [10] According to WeChatSCOPE, here
are some of the most censored topics in 2018:

• China-US trade war
• US sanctions against ZTE
• The arrest of Meng Wanzhou, CFO of Huawei in Canada
• Hongmao medicinal liquor scandal



Figure 1: An exchange illustrating WeChat censorship.

• Metoo and sexual harassment allegations against a
Peking University professor

WeChat is designed such that government or other bodies
can intercept messages at the WeChat servers. Because mes-
sages are not encrypted the entire time, users cannot be sure that
their message are successfully delivered and unedited to the in-
tended recipient. We cannot rely on the application to provide
this protection, so it is vital that users use their own external
methods of protection for their messages.

3. An In-Depth Look at WeChat
In our initial analysis of WeChat, we first looked into the dif-
ferent components that are present on WeChat’s platform. We
will be discussing the different vulnerabilities with the WeChat
system and how those vulnerabilities allow for censorship.

3.1. Impact

To understand the influence of WeChat and the extent to which
censorship may impact the public, here is some data about the
usage of WeChat: [8]

• There are 1.08 billion monthly active WeChat users (Q3
2018)

• Tencent claim one billion daily active users (Jan 2019)

• There were 45 billion WeChat messages sent and 410
million audio and video calls on a daily basis over 2018

3.2. Platforms

WeChat started out as an app, and it has now developed a desk-
top version to appeal to overseas users. WeChat used to have a
web client, however the web client was deprecated in 2017 such
that no new accounts could use the web client.

3.3. Users

In order for users to use WeChat, they need to create an account.
Users would need to enter their name, country, password, and
phone number. A verification code is sent to the phone number
to complete the registration process. Users can choose to log
in on to their mobile phones (where there the user can remain
logged in) or on their desktop. On the desktop version, users
need to verify their login information by scanning a QR code

on their WeChat mobile app. Login verification is usually done
through OAuth 2.0 standard.

When users want to add friends to their messaging or social
media network on WeChat, they can enter a phone number or
WeChat ID or scan a QR code. Users can add others to their
contacts and start chatting or networking with each other. [17]

3.4. Capabilities

WeChat is a free platform that opens up a large ecosystem of
functionalities for the user. Starting from the core of messag-
ing/social needs, WeChat has added on layers to fulfill peoples
everyday needs. A user does not have to exit the WeChat in-
terface because the app provides the ability to perform many
different tasks. One way WeChat tries to ensure trust in their
services is by authenticating all merchants that offer services on
their platforms.

WeChat has integrated many services in one single app:
sending text/voice messages, sharing things on social media,
booking a taxi, booking a doctor appointment, buying movie
tickets, playing games, transferring money to peers, paying
bills, etc. In this security analysis, we will be analyzing the pro-
cess of sending messages through WeChat and in similar con-
texts.

3.5. Third Party Developers

WeChat has opened its platform to third-party developers.
There is an API that developers can access to create WeChat
mini apps or services. However, it can be rather difficult to
officially register to use this API, as they require personal iden-
tification information. We will go into details about a proposed
solution using this API to secure WeChat messaging and the
obstacles we encountered in attempting to do so.

3.6. Vulnerabilities

3.6.1. Lack of End-to End Encryption

WeChat uses symmetric AES encryption but does not use end-
to-end encryption to encrypt users messages. [13] Instead, they
use client-to-server and server-to-client encryption. They claim
that this mechanism ensures that no third party can come be-
tween two users and look at their messages since messages are
stored locally on a users device. However, the lack of end-to-
end encryption can leave the possibility of accessing the mes-
saging system through a back door. [6] That is, it is possible
for a third-party or even a WeChat employee to snoop in and
look at the messages through the servers before the messages
are deleted. Although WeChat stresses that messages are only
stored on users local devices, WeChat may still hand over mes-
sage data to the government when necessary (as stated in its
privacy policy). With the lack of end-to-end encryption, which
is a standard way of ensuring only the intended users see the
messages, WeChat faces security issues.

3.6.2. Local Storage of Messages

WeChat stores all messages that users send in an SQLite
database on the users device, and in order to transfer chat his-
tories and chat logs between devices, the entire database must
be transferred. Furthermore, when a user deletes a voice or
text message, rather than removing the data from the database,
WeChat simply removes the key storage for the data. [17] How-
ever, because this data remains in the local storage, the data
is not actually deleted. This presents several threats as the



database could be decrypted using iterations of PBKDF2. [17]
Then, the security vulnerabilities of the local storage of mes-
sages further points to a need for an extra layer of encryption in
order to secure users messages.

4. Proposed Solutions
Initially, we planned on incorporating external security pro-
tection into WeChat by building mini applications using the
WeChat API. However, we had difficulty registering for an ac-
count to create these applications due to WeChat limitations on
users who live outside of China. However, there are still many
prevalent applications that do not use end-to-end encryption,
such as Slack. Thus, we still proposed solutions that would
ensure security for that platforms that lack end-to-end encryp-
tion. We hope that our proposed solutions can be extended to
WeChat in the future.

We propose two solutions to this problem that would ide-
ally be combined. The first is end-to-end encryption. This is
present in some messaging applications, such WhatsApp and
Apple iMessage, but there are also many platforms that do not
incorporate it, such as Slack and Facebook Messenger 1. The
goal of end-to-end encryption is to keep your message secret
until it gets to the intended recipient. The second is steganog-
raphy. The goal of steganography is to hide information in pre-
existing documents such that an outsider doesn’t suspect that a
secret is being shared.

5. Forced End-to-End Encryption
End-to-end encryption is an important security technique used
to ensure that only the correct users are able to access informa-
tion. For example, if two individuals, Alice and Bob, are trying
to send messages to each other, they should be the only ones
who can view the message. This is achieved with public-key
cryptography. Alice and Bob, each generate their own public
and private keys. The public key can be accessed by the general
public. When Alice, is trying to send a message to Bob, Al-
ice uses Bob’s public key to encrypt a message. This encrypted
message is sent to Bob, and Bob can decrypt the ciphertext with
his private key. When a man-in-the-middle eavesdropper, Eve,
comes between them by hacking into a server with end-to-end
encryption, the server should have the message between Alice
and Bob encrypted; Eve will only see the encrypted text and
should not be able to understand the message she sees being
sent. Otherwise, the messages cannot be kept confidential for
authenticated users. Therefore, end-to-end encryption allows
for confidentiality. There can still be vulnerabilities present
with the use of end-to-end encryption, such as attacks on one
endpoint (i.e. either Alice or Bob) to compromise confidential-
ity, but this is still an important and widely-known scheme for
security. [20]

5.1. Lack of E2EE: Previous Vulnerabilities

Similar to WeChat, many major technology corporations, such
as Amazon’s AWS, Dropbox, and Yahoo use the common 256-
bit Advanced Encryption Standard (AES-256) to encrypt their
information. Integrity is ensured by a third party to store the
encryption keys to defend against outside and insider threats.
However, this provides room for keys to be lost or for hackers to
attack. We see this as account information from over 60 million

1Facebook Messenger secret conversations actually provide end-to-
end encryption, but regular messages do not. [5]

Figure 2: A local send command and how the message would
be stored in a database.

Dropbox users in 2012 more than one billion Yahoo users in
2013 were stolen. [15]

5.2. Local Implementation Attempt

There are APIs that can be used to create public and private
keys used to encrypt and decrypt information. In our sim-
ple proof of concept, we used Virgil Security’s Python3 li-
brary VirgilCrypto. This library performs asymmetric key gen-
eration with the default algorithm (EC X25519), which uses
Curve25519, an elliptic curve that offers 128 bits of security
and is designed to be used with the elliptic curve DiffieHell-
man (ECDH) key agreement scheme. In our implementation,
messages and keys are stored locally. This means it is not en-
tirely end-to-end encrypted since private keys should usually be
stored on each individual device or account to ensure that only
the intended users with access to those devices or accounts can
read the messages. However, by starting locally, we can start
with a proof-of-concept as to how messages can be encrypted
and how a database storing all the messages stores the encrypted
messages and not the actual plaintext messages.

We have a basic.py file that is the backend of our pro-
gram. Everything is done through the command line. As men-
tioned before, we use the VigilCrypto API for encryption key
generation and propose using a MySQL database to store mes-
sages. The database should contain columns for the sender’s
name, receiver’s name, and the encrypted message.

Sending a Message To send a message, a user
can type python basic.py send sender receiver
message. A key part of our implementation is that the server
does not store the message. Thus, we encrypt the message with
the intended receiver’s public key, and we store an encrypted
version of the sent message. This means that governments or
adversaries would not be able to compromise the confidential-
ity and integrity of these messages, as can be noticed in Figure
2.

Viewing Messages To view messages sent to a cer-
tain receiver, a user can type python basic.py view
receiver. This would query all the messages that were
sent to this receiver, and this would also have the messages
decrypted since we are able to decrypt the messages sent to this
intended user with their private key. In this implementation,
we store messages locally, so we cannot retrieve previous
messages, but it would be preferable to be able to store all
these messages on a server database. In future iterations of this
implementation, we would also have to verify the signature of
this user before displaying the decrypted messages.

In the case where the platform is implemented on a server and
private keys can be stored securely, our end-to-end encryption
implementation would be a step forward in providing security
in the face of government surveillance or censorship.



Figure 3: An attempt to encrypt a message through with Slack
slash command

5.3. Slack Integration Attempt

After a local integration of public/private keys to model end-
to-end encryption, we attempted to expand the scope of impact
of our implementation and explore incorporating end-to-end en-
cryption into actual real-world insecure platforms such as Slack.
Slack is a platform used for team or company communication
and does not have an end-to-end encrypted implementation.

We were first able to create a slash command to encrypt
the text sent by a user into a specific channel. Again, we use
the VirgilCrypto API to generate public/private keys and to en-
crypt/decrypt the corresponding messages. As can be seen in
Figure 3, when a user types /e2ee message, then the slash
command will send that information to our application (an ap-
plication that uses the Slack developer’s API and is integrated
into our Slack channel), and the encrypted version (using the
channel’s public key that we generated) of the message is sent
back to the channel.

This is a step forward into exploring how to incorporate
end-to-end encryption into Slack channels, but since the server
still stores the unencrypted information before our application
has a chance to encrypt the message, this is not fully secure. We
need a way to access the user’s message before they even have
a chance to send it. Moreover, after using the slash command,
intended recipients can only see the ciphertext; even if we have
the encrypted message stored, we still need a way for our appli-
cation to decrypt the messages on the intended recipient’s end
before showing them their messages. This is led to our Google
Chrome extension solution.

5.4. Implementation Details

For details regarding code or implementation, please visit
https://github.com/lihelennn/6.857 for further instructions.

6. Forced End-to-End Encryption in
Google Chrome

6.1. Previous Work

Previously, there have been a few attempts or a few initiatives
by Google to launch end-to-end encryption on its services, for
example launching a Chrome extension that would provide end
to end encryption of its messages or of providing end to end
encryption services on Gmail; however, even now Gmail only
implements PGP (Pretty Good Privacy) encryption. Out of the
most commonly used messaging platforms, the only messag-
ing platform that provides end-to-end encryption is Signal. Al-
though Facebook messenger offers the option to open up secret
messaging sessions that are end to end encrypted, these mes-
sages are not stored past the end of a session, which prevents

the secret messaging services from being used for long term
communication.

Therefore, we chose to look into implementing a Google
Chrome extension that would be able to enforce end to end en-
cryption across any messaging platform with a desktop web in-
terface.

6.2. Chrome Extension for Forced E2EE

6.2.1. Prior Chrome Extensions

In implementing our end-to-end encryption overlay in a Google
Chrome extension, we first did some research analyzing any
existing or previously published products that were geared to-
wards a similar goal of encrypting messages on platforms that
did not automatically encrypt messages for users. Noticeably,
the only similar product that we found was a Google Chrome
extension published in 2014 called OTRon. OTRon was a
Chrome extension that would enable end to end encryption by
providing a keypair to users upon installation, such that users
would be to click an icon and enable an encrypted messaging
session so long as the user and the friend they were chatting with
exchanged public keys over another medium to start the ses-
sion. https://github.com/osnr/otron/blob/master/doc/intro.md
The primary issue with OTRon is that the process of passing
the keys could lead to many security faults, which is also a pri-
mary security concern that the author raised in his documenta-
tion of the product. So, we chose to explore existing libraries
that would help us to successfully perform a key exchange with-
out the user actually having to do anything manually other than
maybe turning on encryption for a certain messaging platform.
This is where Signal’s API comes in.

6.2.2. Analyzing Signal’s Design and API

In order to implement end to end encryption, we chose to look
for alternative libraries, similar to VirgilCrypto, that would al-
low us to have a higher guarantee of security without us imple-
menting the security protocol ourselves, such that we could fo-
cus on integrating the security protocols within different frame-
works. Then, in exploring Signal’s actual security protocols
for guaranteeing end-to-end encryption, we found that there are
four main components to Signal’s security design. 2.

1. XEdDSA and VXEdDSA
Signal uses the ”XedDSA” signature scheme, in which
EdDSA-compatible signatures are created and verified
using public key and private key formats initially defined
for the X25519 and X448 elliptic curve Diffie Hellman
function. Signal’s implementation of XedDSA uses the
SHA-512 hash function. Then, essentially in order to
sign a message with XedDSA, in addition to the message
to sign we would need a Montgomery private key and a
64-byte byte sequence of secure random data. In order
to verify a signed message, we would need the Mont-
gomery public key, the signed message, as well as the
signature to verify. 3

2. X3DH
Signal uses X3DH, the Extended Triple Diffie-Hellman
key agreement protocol. X3DH is designed for asyn-
chronous settings in which users can use another of-
fline user’s information published to a server to send en-
crypted data to the offline user and establish a shared

2https://signal.org/docs/
3https://signal.org/docs/specifications/xeddsa/



secret key. In this protocol, suppose Bob were the offline
user and Alice wanted to send a message to Bob. Then,
Bob would first publish his identity key and prekeys to
a server so anyone could contact him even if he was of-
fline. Then, Alice would fetch a ”prekey bundle” from
the server and use it to send an initial message to Bob.
Given this message, Bob would receive and process the
message. 4

3. Double Ratchet
The Double Ratchet Algorithm is used to exchange en-
crypted messages based on a shared secret key. Sig-
nal uses X3DH for its key agreement protocol, and then
given these keys, uses KDF-chains to encrypt all further
messages. 5

4. Sesame
Signal uses the Sesame algorithm, which was designed
to manage Double Ratchet sessions created with X3DH
key agreement. 6

Then, Signal developers have also published API’s to
use Signal’s security protocols in several different language.
We incorporated Signal’s Javascript library, libsignal-protocol-
javascript, in order to establish encrypted messaging sessions in
our Chrome extension. Then, given the security design of Sig-
nal, the main infrastructural components that we had to provide
were a secure store for all of the user’s registrations and key
bundles, as well as a method for each of the users to store their
own key bundles upon installation of our Chrome extension.
So, we attempted to create our secure overlay technique for en-
abling end to end encryption on any messaging application with
a web interface.

6.2.3. Implementation of Chrome Extension

The primary purpose of our Chrome Extension was to develop
a proof of concept product to justify that our concept of en-
forcing end to end encryption over all web-based messaging
platforms may be possible. There are, of course, limitations to
security and the simplicity of the user interface for these mes-
saging platforms by function of implementing this product as a
Google Chrome extension, however we will elaborate on those
constraints further in this paper. First, we will describe our sys-
tem design.

One of the most important components in the Signal de-
sign is the secure key storage. So, we created an SSL en-
crypted server such that there was a degree of security in our
storage of key bundles. Then, upon each user’s installation of
the Chrome extension, they would be led to a popup page in
which they could input their gmail address, which would be
used to store their keybundles on the server. Furthermore, the
user’s keybundle would be generated upon sign in on the in-
stallation sign-in page, making the process much more hands-
off. Then, when a user navigates to any url containing the
string ”www.messenger.com”, then the extension would acti-
vate a content script that would then either display the normal
content, or attempt to begin an encrypted messaging session
based on whether or not the user had selected to encrypt their
messages in the popup.

Then, should the user have activated the encryption, then
the users would essentially need to exchange their Gmail email

4https://signal.org/docs/specifications/x3dh/
5https://signal.org/docs/specifications/doubleratchet/
6https://signal.org/docs/specifications/sesame/

Figure 4: The login page upon installation of the Chrome exten-
sion

Figure 5: The popup in the corner of Chrome in which users can
choose to activate or deactivate encryption of Facebook Mes-
senger messages.



addresses used to register with our extension with each other
over messenger such that our extension would be able to per-
form the key agreement previously described and then begin a
messaging session encrypting all messages, with the extension
decrypting messages by modifying the user’s DOM.

To see the basic implementation of this infras-
tructure, we have published most of our code here
(https://github.mit.edu/melchen/wE2EEchat), but we have
removed the server URL.

6.2.4. Evaluation of Chrome Extension

In designing and implementing our Chrome extension, we
found many weaknesses that could potentially explain the lack
of development for such a product. Essentially, based on the
limitations placed upon developers for Google Chrome appli-
cations, particularly based on the limitations for sharing data
between different Javascript scripts, in order to actually per-
form any of the retrieval of key bundles from the server or start-
ing the encrypted messaging sessions, we had to pass some of
the secure information that should only be stored on the server
through chrome.storage.local, which presents many security
vulnerabilities in and of itself. However, beyond this, based on
the scopes of the various Chrome functions available for detect-
ing availability, some information would also have to be trans-
ferred through other even less secure local storage for that web
browsing session in order to enable up-to-speed encryption and
decryption suitable for how messaging platforms are actually
used. As per Chrome’s documentation, chrome.storage is not
suitable for storing confidential information. 7.

Then, even beyond the faults within our own code that pro-
vide security vulnerabilities, having our extension hosted on
Google Chrome is in and of itself as anyone who is able to inter-
cept the client-server SSL connection would be able to execute
MITM attacks. Furthermore, Signal’s developers also acknowl-
edged the security risks and great difficulties of guaranteeing
secure end to end encryption in Chrome apps, which is why in
2018, Signal deprecated their Chrome app and replaced it with
Signal Desktop 8.

However, just because we were curious, we wanted to test
if we could overlay end to end encryption using this technique
over the web interface for WeChat. Unfortunately, much like
Signal, WeChat also grandfathered the web client such that no
accounts created after June 2017 would be able to use the web
client, so unfortunately, we were never able to put the E2EE in
wE2EEchat. 9.

7. Steganography
While end-to-end encryption is great for making sure that op-
pressive governments and other adversaries cannot read or edit
your messages, it does not stop them from blocking communi-
cation altogether. Adversaries could easily assume any commu-
nication that looks like random bits is actually encrypted data
and block those messages. The goal of steganography is to hide
data such that an adversary is not suspicious of any secret com-
munication that may be occurring.

Steganography is the art of hiding information within var-
ious forms of media and is a great compliment to data encryp-
tion. The media that is chosen to hide the data is called the cover
media, and the media that results from the data hiding is called

7https://developer.chrome.com/apps/storage
8https://signal.org/blog/standalone-signal-desktop/
9https://github.com/Chatie/wechaty/issues/872

the stego-media. Images are very commonly used as the form
of media because of their abundance online and the presence of
redundant information within many image formats.

7.1. Defining Security

The security of encryption algorithms is well defined; encryp-
tion algorithms fall into two categories: information-theoretic
secure and computationally secure. Information-theoretic se-
cure algorithms are impossible to break without knowing the
private key. An example of an information-theoretic secure en-
cryption algorithm is the One Time Pad. Because every bit is
essentially completely random, as long as the pad is only used
once and the pad is truly random, there is no way to know what
the original message was without the key. Computationally se-
cure encryption algorithms are possible to break with infinite
computation power. RSA is an example of a computationally
secure algorithm [16]. Knowing the public and secret keys, it is
easy to encrypt and decrypt messages (polynomial time). How-
ever, if you do not know the secret key, it takes an exponential
amount of time to figure out the message; with large enough
keys, it is computationally unfeasible to actually figure out the
message.

7.1.1. Level of Security

Steganography algorithms have their own criteria for determin-
ing the strength of an algorithm [14]. The level of security is one
of the most important and is the most similar to standard encryp-
tion criteria. A steganography algorithm can be information-
theoretic secure if the algorithm uses randomness and the mes-
sage is independent of both the stego-media and the cover me-
dia [2]. Christian Cachin shows that a information-theoretic
secure steganography algorithm exists assuming a passive ad-
versary, but in the same way that information-theoretic secure
encryption algorithms are not always a viable option given effi-
ciency constraints and the constraint of a passive adversary, the
same applies to steganography algorithms. A steganography al-
gorithm is secure if you cannot distinguish between the cover
media and the stego-media with any statistical tests, however
even if you cannot tell which media has the hidden information,
this does not stop an active adversary from blocking communi-
cation anyway.

7.1.2. Capacity

The capacity is another way to determine the strength of a
steganography algorithm. There are many different metrics
used for capacity depending on the cover media, one being bits-
per-pixel that is commonly used when the cover media is an
image. The message that needs to be hidden has length m, and
the cover media (image) has c pixels; in this example, the ca-
pacity is m

c
bits per pixel. The larger the capacity ratio, gen-

erally the better the algorithm in terms of efficiency. However,
there is usually a trade-off between capacity and level of secu-
rity. Too high of a capacity can make it obvious that there have
been changes made to the media.

7.1.3. Time Complexity

Time complexity is another very important factor. In the same
way that efficiency is important for encryption, it is important
for steganography. As the information that needs to be hidden
gets very large, performance is very important for the algorithm
to be applicable for real life.



Figure 6: Roy et al. comparison of steganography algorithms.

7.1.4. Robustness

The final important metric for judging the security of these
steganography algorithms is whether the method withstands ed-
its to the stego-media. Some steganography algorithms hold up
even when media is trimmed, cropped, or transformed in some
way. This property is very important for the watermark appli-
cation that is discussed in a later section.

7.2. Comparing Techniques

7.2.1. Common Techniques

Least Significant Bit (LSB) substitution [22] is one of the sim-
plest methods of steganography. The least significant bits in the
pixels of the image are replaced with the bits of the message that
you want to encode. The order that pixels are changed depends
on the implementation, but there is usually a scheme that in-
cludes randomness to make the algorithm harder to detect. This
method is vulnerable to many statistical tests.

Pixel Value Differencing [3] is similar to LSB, but the num-
ber of bits replaced in a pixel depends on where in the image the
pixel is located and the data surrounding the pixel. Humans are
really good at noticing if there are pixels that have been edited
in a section of an image that is supposed to look smooth (ie.
all one color). Pixels with a lot of surrounding variability will
hold more message bits, and pixels where the surrounding area
is uniform might hold no bits. This method is a lot less de-
tectable by humans and is safer from histogram attacks, but is
still vulnerable to chi-squared statistical attacks [14].

The method of JSteg is pretty different from the previous
two methods, and is considered a transform method as opposed
to a spacial method. This method takes 8 by 8 pixel blocks
and performs a discrete cosine transform for the block to get
DCT coefficients. The LSB of the message is then inserted into
the LSB of the next DCT coefficient. At the end, the image is
turned into the stego-image using these new DCT coefficients.
Because the information hiding is done in the frequency domain
as opposed to the color domain, the visual changes to the image
and the distribution of colors only change slightly. [23]

7.2.2. Evaluation

Roy et al. [14] published an overview of steganography and
included an analysis of the security of many of these methods.
They split the methods into two categories: spacial and trans-
form, and evaluated based on the complexity, level of security,
capacity, and whether the algorithm can be used with lossy or
lossless cover media. Figure 6 shows the results of their analy-
sis.

The transform methods are much more computationally in-
tensive and do not have as high capacity, but they are much
stronger steganography algorithms. Transform methods can

be used for applications such as watermarking (see the Cul-
tural Impact of Steganography section), because they withstand
transformations to the cover media. These transformations
could include trimming of an audio clip or cropping an image
[14].

7.2.3. Recent Work

Recently proposed steganography algorithms have started to be-
come more secure, but the performance of many of these algo-
rithms still degrades a lot with Chi-Squared and RS Analysis.
In October, Molato et al. propose a method that is based off of
the LSB algorithm and is much harder to detect by these two
analyses [12].

One of the most important steps in their method requires
generating a large safe prime p and calculating the quadratic
residues. The quadratic residues are used to determine the lo-
cations of the least significant bit replacement, and also used to
generate a one-time pad to to perform an exclusive bitwise OR
with the secret message. It is computationally unfeasible to fig-
ure out p and this causes the algorithm to be a lot more secure.
Molato et al. also achieve high capacity by using Huffman en-
coding to pre-process the message before performing the exclu-
sive bitwise OR with the message and the one-time pad. Also,
in order to make the algorithm less detectable by Chi-Squared
and RS analysis, the least significant bit replacement is done in
the YCbCr domain instead of the RGB domain; the image is
transformed to the new color domain, the algorithm is applied,
and then the image is converted back to RGB.

Generating the quadratic residues is computationally ex-
pensive, so to combat this, they propose choosing a prime and
pre-computing the quadratic residues if this were to be an ap-
plication for users. This would make the algorithm a bit less
secure, but it would be a lot faster for people to actually use.
[12]

7.3. Cultural Impact of Steganography

The increasing popularity of steganography has created a lot
of new opportunities. Companies and individuals can use
steganography techniques to keep their data safe and fight cen-
sorship in oppressive governments. However, steganography
also provides an easy way for terrorists to hide their plans in
plain sight.

Steganography can be used in a positive way to help com-
panies protect their content against copyright infringement.
Steganography techniques can be used to insert watermarks into
media that go virtually undetected. [9] If people are unaware a
watermark is present, it is much less likely to get removed and
then copyright infringed content can be found online. This type
of watermarking requires techniques that are not affected when
media is edited. An example of this is a watermark within an
audio file that withstands trimming the audio or adjusting the
pitch. Music pirating costs the music industry around 12 billion
dollars every year [1], and this is not good for the economy or
for the content creators. Steganography is a way to protect peo-
ples right to the content that they create and make it easier to
find stolen content on the internet.

Citizens under oppressive governments can use steganog-
raphy to hide their communication with the outside world and
avoid censorship. WeChat is used extensively in China, and the
Chinese government will censor images over WeChat if they
are deemed harmful to society as discussed earlier in our pa-
per; this includes discussion of the me too movement. People
can use steganography to bypass these types of filters; they can



also report to the outside world atrocities that may be occurring
in their country. Messages that are hidden in seemingly harm-
less content are less likely to be filtered and blocked unless a
government wants to block all media.

It is suspected that many terrorist organizations have also
used steganography to hide their attack plans from the pub-
lic. The FBI suspected that Al-Queda was hiding terrorist plots
within websites such as sports chat rooms and pornographic
sites [4]. This technology makes it a lot easier for terrorist or-
ganizations to communicate around the globe without raising
suspicion of the public or government officials. While discover-
ing stronger steganography algorithms can help in some cases,
finding ways to break these algorithms is also an important way
to protect innocent people.

7.4. The Downfall of Steganography

While Steganography has the potential to help stop censor-
ship under oppressive governments, there are still problems that
cause a lot of common steganography techniques to fall short of
beneficial. The first issue is how a group of people can decide to
use steganography in the first place and agree on the technique.
Even if the method is public and difficult to detect using statis-
tical analyses, there has to be some sort of agreement between
the parties that communication is going to happen to begin with.
In some situations this can be remedied by meeting in person,
for example if family members in and out of China want to talk
about certain topics, when they see each other in person they
can exchange a secret key or method so that they can commu-
nicate when they are far apart. However, this is not always an
option, especially for people located in an area that you cannot
safely try to enter or leave, for example North Korea.

Another problem that can occur is that many of the algo-
rithms with good time complexity would not work if random
noise is added to whatever cover media is chosen, especially al-
gorithms that are a variant of LSB. While I do not think it is
realistic for a government to add random noise to every image
that is sent on WeChat or uploaded on the internet, it does pro-
vide the government a way to prevent communication if they
decided to dedicate the resources to this kind of prevention.

8. Conclusions

Through our research about the analysis of WeChat, we have
been able to able to come up with vulnerabilities that allow for
government and surveillance. Although we were not able to
create a WeChat mini applications due to identification require-
ments to register those mini apps, we came up with other solu-
tions that resemble proof-of-concepts for security. For instance,
our simple end-to-end encrypted implementation of sending
messages between two users and ensuring that those messages
are encrypted on a server ensure that censorship cannot happen,
since no third party can snoop into the server and read the mes-
sages. Additionally, a Google Chrome extension that provides
end-to-end encryption would allow insecure platforms such as
Facebook messenger to be secure against the government and
adversaries. By exploring steganography, a new topic we did
not cover in class, we also have a new avenue to help with send-
ing messages in the face of censorship. Thus, this project has
been a step forward in providing security for the public, which
is especially crucial as more and more aspects of society and
information are reliant on technology.

9. Acknowledgements
We would like to thank Ronald Rivest and Yael Kalai for run-
ning Computer and Network Security and teaching us so much
throughout the semester. We would also like to thank Sean
Fraser for mentoring us for this project, as well as the other
TAs that have been very helpful throughout the semester.

10. References
[1] Beverly Storrs, ”Piracy is stealing and affecting mu-

sic industry”, The Daily Universe. Feb. 21, 2012.
https://universe.byu.edu/2012/02/21/piracy-is-stealing-and-
affecting-music-industry/

[2] C. Cachin, ”An information-theoretic model for steganography”
2nd International Workshop Information Hiding. 1998.

[3] D. C. Wu and W. H. Tsai, ”A steganographic method for images by
pixel-value differencing,” Pattern Recognition Letters, vol. 24, no.
9-10, pp. 1613-1626, 2003.

[4] Declan McCullagh, ”Bin Laden: Steganography Master?”, Feb. 7,
2001. https://www.wired.com/2001/02/bin-laden-steganography-
master/

[5] Gartenberg, Chaim. Mark Zuckerberg Reportedly Orders
Facebook Messenger and Instagram Teams to Add End-
to-End Encryption. The Verge, The Verge, 25 Jan. 2019,
www.theverge.com/2019/1/25/18197222/facebook-messenger-
instagram-end-to-end-encryption-feature-zuckerberg.

[6] Grigg, Angus. WeChat’s Privacy Issues Mean You Should Delete
China’s No. 1 Messaging App. Australian Financial Review, 21
Feb. 2018

[7] Huang, Qun; Lee, Patrick P.C.; He, Caifeng; Qian, Jianfeng; and
He, Cheng. Fine Grained Dissection of WeChat in Cellular Net-
works. IEEE 2015.

[8] Iqbal, Mansoor. WeChat Revenue and Usage Statis-
tics (2019). Business of Apps, 27 Feb. 2019,
www.businessofapps.com/data/wechat-statistics/.

[9] Jonathan Cummins, Patrick Diskin, Samuel Lau and Robert
Parlett, ”Steganography and Digital Watermarking”, School
of Computer Science, The University of Birmingham. 2004.
https://www.cs.bham.ac.uk/ mdr/teaching/modules03/security/ stu-
dents/SS5/Steganography.pdf

[10] Leung, Hillary. Here Are the Most Censored Topics on
China’s WeChat: Report. Time, Time, 13 Feb. 2019,
time.com/5528362/china-wechat-censorship-wechatscope/.

[11] Mittal, Mohit. Wechat - The One App That Rules Them All. Har-
vard Business School Digital Initiative. Web. 18 March 2019.

[12] Molato, Mark; Gerardo, Bobby; Medina, Ruji; ”Secured Data
Hiding and Sharing using Improved LSBbased Image Steganog-
raphy Technique”. ICIBE’ 18. Oct 24, 2018.

[13] Overview of Message Cryptography. 20 Mar. 2019.

[14] Ratnakirti Roy, Suvamoy Changder, Anirban Sarkar, Narayan
C Debnath. ”Evaluating image steganography techniques:
Future research challenges”. ComManTel, 21 Jan. 2013.
https://ieeexplore.ieee.org/document/6482411/

[15] Recent AWS Leaks Reveal the Only Way to Truly Pro-
tect Data in the Cloud: End-To-End Encryption. PreVeil, 4
Feb. 2019, www.preveil.com/blog/way-truly-protect-data-cloud-
end-end-encryption/.

[16] Rivest, R., Shamir, A., and Adleman, L. ”A method for obtaining
digital signatures and public-key cryptosystems.” Comm. ACM 21,
Feb 1978 (Feb. 1978), 120-126.

[17] Rutnik, Mitja. How To Use WeChat. Android Authority. Web. 2
Feb. 2019.

[18] Shen, Chen. WeChat, in a System Design Perspective.
CCTP820 Leading by Design Principles of Technical and So-
cial Systems, 2016, blogs.commons.georgetown.edu/cctp-820-
fall2016/2016/12/17/wechat-in-a-system-design-perspective/.



[19] Sonnad, Nikhil. What happens when you try to send politically
sensitive messages on WeChat? Quartz. Web. 17 April 2017.

[20] Square. What Is End-to-End Encryption and Why You Really
Need It. Square, squareup.com/townsquare/end-to-end-encryption.

[21] Verble, Joseph. 2014. The NSA and Edward Snowden: surveil-
lance in the 21st century. SIGCAS Comput. Soc. 44, 3 (October
2014), 14-20. DOI: http://dx.doi.org/10.1145/2684097.2684101.

[22] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, ”Techniques for
data hiding”, IBM System Journal, vol. 35, no. 3, pp. 313-336,
1996.

[23] ”JSteg: Steganography and Steganalysis”. Se-
mantic Scholar https://pdfs.semanticscholar.org/8893/
ba76f2e358e80ef5bd93e42b9c454cfb7770.pdf


