
Cryptanalysis of Purple, Japanese WWII Cipher Machine

Barjol Lami, Gledis Kallco, Nicholas Guo, Sean Shi

May 2019

Abstract

Cipher machines have been the most frequently used method for safe communication
during World War II. Some war messages of very high importance were sent encrypted
through these machines, therefore they were designed to be very secure in order to
prevent the decryption by the rivals. This paper will focus on one cipher machine,
Purple, which was used by the Japanese. In this paper, we give a detailed overview of
Purple as well as go though a couple attacks we implemented to break it.

1 Introduction

Purple is the codename used by American cryptanalysts for the 97-shiki-obun In-ji-
ki (Alphabetical Typewriter ’97), the machine used by the Japanese during World War II
[1]. The Japanese used this machine in order to encrypt important diplomatic and military
messages. For example, Purple was used to encrypt the 14-part message, a 5000 characters
long message sent from the Japanese Government to its Washington embassy, which broke
off the negotiations between the Japan and United States [1].

Purple is also called Type B Machine since it was the successor of a Japanese cipher
machine called Red (also called Type A Machine), from which it inherited many of its
properties [6]. In their design of Purple, the Japanese fixed some of the security flaws
present in the Red machine.

During the war, US cryptanalysts were able to figure out how Purple worked, and also
built Purple simulators to help with the cryptanalysis. For our project, we assume we know
exactly how Purple works, and have access to a simulation of Purple in Python.

2 System Overview

In this section we will explain the structure of the machine. We will use the version
that the United States cryptanalysts used as a replicate of the original one, as the Japanese
made sure that no original version of Purple used by them was ever found.

2.1 Elements of Purple Machine

Purple has 3 main components: input plugboard, permutation switches and output plug-
board.

1



Figure 1: Inner structure of Purple [1]

2.1.1 Input Plugboard

The input plugboard is composed of two parts, the internal and the external alphabets.
The external alphabet is where the input from the typist comes from (the keyboard). Each
of the letters from the external alphabet is then mapped to one of the letters in the internal
alphabet. This is done manually so every possible permutation of the alphabet can be a
valid mapping. The internal alphabet is what the machine will use to encrypt. A very
important aspect of this alphabet is that it’s divided in two parts, the sixes which are the
vowels and the twenties which are the consonants. As shown in Figure 2, any of the letters
can be mapped to either the sixes or the twenties in the plugboard. This is a significant
improvement from Purple’s predecessor, the Red machine, which could only encrypt a vowel
to a vowel and a consonant to a consonant [6]. However the 6-20 split makes the cipher
machine more vulnerable as will be explained in section 3.

2.1.2 Switches

After a letter goes through the input plugboard, it can be encrypted in two different
ways depending on whether it maps to one of the sixes or one the twenties. Sixes get
permuted through a switch called the sixes switch. It has 25 possible positions, which means
25 possible permutations of the sixes out of 6! = 720 that is the total space of permutations.
The twenties have a bigger space of possible permutations. They get permuted through 3
consecutive switches called twenties switches, each of which has 25 possible positions.
Combined, 3 twenties rotors can produce 253 possible permutations for the twenties. Every
time a letter gets encrypted by the machine, the sixes switch and one of the twenties switch
will change the position as will be described in section 2.2. By doing this the machine
generates a new alphabet permutation for the next letter to be encrypted.

2



(a) Mapping of sixes (b) Mapping of twenties

Figure 2: Input plugboard mapping [5]

2.1.3 Output plugboard

The switches permute the input from the internal alphabet of input plugboard to
the internal alphabet of the output plugboard. From the internal alphabet of the output
plugboard, letters then map to the output typewriter through the same identical mapping
as the input plugboard. This is the way Japanese chose to do this mapping however the
input and the output plugboards are independent so they could also have different mappings
[1].

2.2 Stepping switches

The input and the output plugboards will be fixed for a specific encryption. The
machine only uses the rotors to change the permutation alphabet for every letter. Each of
the positions of the switches does a unique permutation of its corresponding input space.
The permutation by each of the positions is constructed in a manner such that no two of
the 253 permutations from the twenties are the same.

Figure 3: Stepping switches [5]

The sixes switch advances after every letter gets enciphered, meaning it will start
repeating permutations for every 25 characters enciphered. The twenties switches advance

3



based on the labels they have. Each of them can get labeled as ”fast”, ”middle” and ”slow”
so that gives 6 different possible labeling. Labeling determines which of them moves at a
specific moment. Based on their names, the ”fast” switch will advance more frequently than
the ”middle” one, which will advance more frequently than the ”slow” one. More specifically,
the ”slow” switch advances every time the sixes reaches position 24 and the ”middle” switch
is at position 25. The ”middle” switch advances every time the sixes switch is at position
25 and the ”fast” switch is at position 25 and the ”fast” switch moves every other time. An
example of this movement is given at Figure 3.

2.3 Example of encryption by Purple

In Figure 4 we can see the encryption of a letter that is mapped to one of the sixes.
On the left, there’s the input plugboard. In our case it takes K as external input from
Typewriter and outputs U as internal input. On the right of the figure we see the output
plugboard which gets E from internal output, and outputs S. In the middle, the sixes switch
permutes letter U depending of the permutation in position 3 of the 25-position switch
and outputs E. For the Typewriter, this is equivalent to encrypting K to S, due to the
plugboards.

Figure 4: Encryption of a letter from the sixes [1]

2.4 Key Space

If we analyze the structure of the machine, we see that there are 253 possible starting
positions for the twenties switches. In addition, are 6 different ways we can label them
as ”fast”, ”middle” and ”slow”. There also 25 different starting position for the sixes.
Considering also the 26! possible permutations of the alphabet that depends on the wiring
the user decides to use in the plugboard, in total we get: 6 ·253 ·25 ·26! ≈ 9.45∗1032 possible
keys. This is a considerably big number to be brute forced, especially for the time this
machine was used. But taking advantage of some weaknesses the machine has and doing
frequency analysis on it’s outputs, the complexity of the problem reduces significantly as we
can see in the following sections.

4



3 Weaknesses

Even though Purple shows a high complexity for one to decipher, it has some weak-
nesses in its structure that an adversary can take advantage of. The Japanese built the
machine based on its previous version Red, where the 6 vowels were permuted within them-
selves, and used the same separation for the internal plugboard. They added the permu-
tation from the external alphabet to the internal plugboard, but that turned out to not
add complete security to the fact that these 6 letters are treated separately, especially since
American had previous messages from Red and knew about the 6-20 split.

The partition of the keys into 6-20 gives a limited number of configurations possible.
For a given letter there are not 26 different possibilities to be permuted to, but only either
6 or 20 due to the connection built in the machine configuration. This connection drops
the number of possible alphabet permutations to 6! · 20!, instead of 26! if every letter could
be permuted to every other alphabet letter. An adversary can first identify the letters that
belong the sixes in a relatively short time, and later has to deal only with 20! possibilities,
which is considerably smaller than 26!. Moreover, the number of configuration drops from
6 · 254 = 2, 343, 750 in total to 6 · 253 = 93, 750 after identifying what goes to the sixes.

Another issue with Purple is the limited number of rotors this machine uses is some-
thing else that adversaries can exploit. Since there is only one 25-position switch in the
sixes and three 25-position switches in the twenties, the alphabet permutations used by
the machine repeat after at most 25 · 25 · 25 = 15, 625 inputs, which is a value not that
unreasonable for an adversary to brute force.

Based on the weaknesses mentioned in this section, we developed two attacks taking
advantage of these weaknesses that run in a reasonable time.

4 Attacks

We implemented two attacks: a known-plaintext attack and a ciphertext-only attack
that finds the key through hill climbing. We use a Purple simulator by Brian Neal as our
simulator [3].

4.1 Known-plaintext Attack

For the known-plaintext attack, we are given a plaintext and ciphertext pair, and are
tasked with finding the entire key. The motivation behind this attack is that the Japanese
historically used very few rotor and plugboard settings compared to the entire key space,
and that in practice, obtaining a plaintext-ciphertext pair is not that unlikely. For instance,
operational errors may occur that give such a pair. For example, suppose some Japanese
operator receives a message encrypted with an already broken cipher, decrypts it, and re-
encrypts it with Purple. This gives us a plaintext, from the already broken cipher, and a
ciphertext, from the Purple-encrypted message.
The known-plaintext attack works in three stages:

1. Finding which letters are wired to the sixes and twenties rotors

2. Finding the sixes rotor position and the specific plugboard setting for the sixes

3. Finding the twenties’ rotor positions, which rotors are fast and medium, and the
specific plugboard setting for the twenties

5



Let our plaintext be x = x1x2 · · ·xn and our ciphertext be y = y1y2 · · · yn, where
the xi and yi are individual characters. Let the unknown input plugboard be a function f
where if some letter a is wired to b we have f(a) = b. Then the output plugboard is f−1.
Let ai = f(xi), i.e. a = a1a2 · · · an is the message after passing the input plugboard. Let
bi = f(yi), i.e. b = b1b2 · · · bn is the message after passing the rotors. Then passing the
message a through the rotors gives b. Also, for any i, either both ai and bi are wired to the
sixes rotor or they are both wired to the twenties rotors.

A note about the output plugboard being f−1 as opposed to f : we found conflicting
documentation as to which one it is, specifically [1] suggests f but [3] suggests f−1. Since
we are using [3] as our simulator, we will assume the output plugboard is f−1.

4.1.1 Finding which letters are wired to the sixes and twenties rotors

To find these groups, we make the following observation. Let i and j be two indices
such that xi 6= xj and yi = yj . Then ai 6= aj but bi = bj . Then, bi and bj are both wired
to sixes or both wired to twenties, so ai and aj are both wired to sixes or both wired to
twenties. Hence, either xi and xj are both in the sixes or both in the twenties. Repeat this
step for all pairs of i and j that you find. Note that this step works no matter what the
output plugboard is in relation to the input plugboard, since the only thing used is bi = bj .

This partitions the letters into multiple groups where all the letters in each group are
either all in the sixes or all in the twenties. If there are sufficient letters in the plaintext,
there will (usually) be two groups, one corresponding to the sixes, one corresponding to the
twenties. Otherwise, if there are more than two groups, it is possible to figure out how to
combine the groups to generate plausible sixes/twenties splits.

4.1.2 Finding the sixes rotor position and the specific plugboard setting for
the sixes

For this step, we only consider the letters in each text that correspond to the sixes.
Note that the twenties rotors and the plugboard wiring for the twenties do not affect the
encryption of the sixes at all. Hence, only the sixes rotor position and plugboard setting
matters. Then, there are only 6! · 25 = 18000 different distinct keys to check. In our
algorithm, we just search through all distinct keys, which is fast enough.

4.1.3 Finding the twenties’ rotor positions, which rotors are fast and medium,
and the specific plugboard setting for the twenties

For this step, we assume we know the sixes rotor position and plugboard settings.
It turns out that the sixes plugboard settings are not needed. This step works by running
through all possible initial arrangements of the twenties rotors, and making guesses for
specific wires in the plugboard and using the rotor settings to figure out more wires in the
plugboard.

The subroutine that guesses a plugboard given the rotor settings is discussed in more
detail below. The subroutine will actually return all possible plugboard settings consistent
with the rotor settings.

Start with an empty plugboard. Make a guess for one of the wires in the plugboard, say
this corresponds to guessing f(m) = n. Then, if we have xi = m, ai = n, and we can figure
out bi through knowing the rotor position. Then, f(yi) = bi. This corresponds to another
wire in the plugboard. We also can detect if a guess makes a plugboard inconsistent, i.e.

6



two inputs are wired to the same output. Keep on making guesses as long as the plugboard
remains consistent and is incomplete.

An optimization can be made with calculating the permutations given by the rotor
positions by simply precomputing these permutations and storing them.

The entire attack, including the precomputation for the twenties rotor permutations,
takes roughly 5 minutes on a modern machine. In addition, the first step requires messages
of only length 100, and the second and third steps only require messages of roughly length
50 to uniquely determine the key.

4.2 Hill Climbing Attack

In this section we go over our hill climbing attack. We require only about a thousand
characters of ciphertext to recover the key that generated them using this approach.

The hill climb algorithm is an iterative optimization technique that greedily finds local
maxima of functions by taking some arbitrary solution, then updates that solution to some
neighbor with a higher value at each step [1]. Specifically, we repeat the following process.
Given x and f(x), we evaluate different values of x+δ, where δ is a small change in different
dimensions. For any δ such that f(x+ δ) > f(x), we update x to x+ δ.

In our attack we use the hill climb algorithm twice: first to find the position of the
sixes switches along with the sixes permutation, and second to find the position of the
three twenties switches, the speeds of them, and the plugboard permutation of the twenties.
Because of the twenties and sixes switch divide, we are able to break the hill climbing into
these two pieces such that we can gain some signal by variating one set of parameters, then
with the other.

The scoring function we will use for the hill climb attack is bigram frequency. A
bigram is simply a pair of consecutive alphabetic characters that occur frequently in the
suspected plaintext. Thus if we obtained a list of bigrams that occur frequently in the corpus
of plaintext we wish to decrypt, we know that a decryption that contains more bigrams is
more close to the actual decryption than one done by a key that contains less bigrams. Note
that the list of bigrams that should be used is dependent on what we think the messages
are. In WWII, the Japanese sent messages in Japanese, which was represented by two or
three letters per Japanese character. We can use the most common characters to generate
bigrams. For us, we were trying to decrypt English text, so we found a list of commonly used
English bigrams [4]. And lastly, the way we would evaluate a certain set of permutations and
rotor positions was by using that to decrypt the ciphertext and counting the total number
of matching bigrams.

To carry out the attack, we first iterated over each possible sixes switch. Then, for
each sixes switch, we initialized our hill climb with some random sixes permutation, for
example FV COIL. Then, we evaluated the bigram frequency using our switch position
and the given permutation (picking random positions / permutations for the twenties).
Next, we tried different neighbors of the sixes permutation. The neighbors we chose were
permutations that could be generated from the original by swapping a pair of characters.
This includes things like AV COIL, where we swapped off the F , and V FCOIL, where
we swapped the V and F . Then, we repeated this process until no neighbor gave a higher
bigram frequency score, which we assume to be the local maximum for the particular sixes
switch position. Since local maxima may not be global maxima, we add some additional
random restarts to make it much more likely we hit a global maximum for each hill climb.
Then, we look for the highest bigram frequency for each of the different switch positions,

7



then assume that switch position as well as the permutation are correct.
Then, with this ground truth info of what the sixes switch and permutation should

be, we repeat the exact same process with the twenties switches and permutation. We try
each switch position / speed combinations and hill climb over the possible permutations.

4.2.1 Implementation and Performance

To simulate the purple machine and carry out our attacks, we used the Purple module
from Python [3]. The module takes in a set of starting switch positions and the plugboard
permutation and allows us to encrypt or decrypt messages using those settings. To set up
our attack environment, we generated some random set of switches and permutation, then
used that to encrypt some random block of English text from an article found online. The
attack itself was written in Python3.

The attack in total took about 8 hours to complete on a macbook pro. The main
bottleneck came from the fact that for the twenties hill climb, we had to perform a hill
climb for every switch position and speed combination, a total of 253 ∗6 = 93750 times. The
reason that the switches themselves could not be part of the hill climb was that each switch
position corresponded to a totally different hard-coded permutation. Thus modifying a
switch position by one was actually a huge change in comparison to swapping two characters
in the plugboard permutation.

One optimization we used was to use multiprocessing to speed up computation. Since
each separate hill climb is independent of another, we were able to take advantage of using
the 8 cores on our Macbook Pro to concurrently hill climb. Another thing we realized was
that using the full text we had was more than necessary to derive the switch positions and
plugboard permutation. By reducing the amount of ciphertext to decrypt (we can do this
since there is a one to one correspondence from ciphertext to plaintext), we were able to
reduce the amount of time things took significantly. A text length of 1000 was about the
shortest we could use to still crack the machine.

5 Conclusion and Future Work

In this project, we successfully managed to break Purple only given a ciphertext,
however, we think that the security of the machine is very good considering the years when
it was used. We find it pretty impressive that the American cryptanalysts were able to
decrypt messages with it [2].

We were unsuccessful in trying to figure out a way to hill climb over the switches
which would theoretically reduce the running time to breaking the machine by a big factor,
so that might be a objective to achieve in a future work on Purple. Also, we think that
implementing our code in C++ instead of Python would also reduce the running time by
at least a factor of two.

Finally, we know that this machine could have been much harder to break if the letters
were not divided in 6-20. This could have been avoided if they would wire the machine so
that all 26 letters were permuted to every other 26 letters, connecting those the same chain
of rotors. Also adding extra rotors would increment the complexity of the machine as it
would increase the total number of permutations.

8



6 References

1. Freeman, Wes, Geoff Sullivan, and Frode Weierud. Purple Revealed: Simulation and
Computer-Aided Cryptanalysis of Angooki Taipu B. Cryptologia 27, no. 1 (January
1, 2003): 143. https : //doi.org/10.1080/0161− 110391891739

2. Friedman William F. ”Preliminary Historical Report On the Solution of the ”B” Ma-
chine” http : //cryptocellar.org/files/PURPLE History.pdf

3. Neal, Brian. Purple: Simulation of the WW2 Japanese PURPLE Cipher Machine.
(version 0.1.0). OS Independent, Python.
https : //bitbucket.org/bgneal/purple/

4. Practical Cryptography. http : //practicalcryptography.com/cryptanalysis/letter −
frequencies− various− languages/english− letter − frequencies/

5. Shikhare, Aparna. Cryptanalysis of the Purple Cipher Using Random Restarts. Master
of Science, San Jose State University, 2015. https : //doi.org/10.31979/etd.tcqp−x6sz

6. Type B Cipher Machine. In Wikipedia, May 10, 2019. https : //en.wikipedia.org/w/index.php?title =
Type B Cipher Machineoldid = 896491081

9


