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1 Motivation

As you are surely painfully aware, Facebook provides decent service at the extremely high
cost of constantly disregarding user privacy, common decency, and laws around the world,
and yet they still have billions of users. How can this be possible? They have a monopoly.
Monopolies breed complacency, low quality, and high costs. And Facebook has a monopoly
over your friend network. You can’t leave because everyone is on Facebook. Switching to a
new platform means every single one of your friends has to make a new account, download
a new app, and you have to rebuild that whole network—if you can convince them at all.
It’s the same story for any platform (though most don’t charge such a high price), and it’s
unavoidable. Metcalfe’s Law states that the value of a network is proportional to the square
of the number of its users, so it’s no wonder the network effect is one of the most powerful
social phenomena.

2 Introduction

We believe the solution is a decentralized social network which is encrypted at rest. When
the user has the key to decrypt and modify their own data, they have complete control, and
can grant and revoke control from third parties. Everyone’s data is just ‘out there’, many
copies floating around in encrypted blobs that anyone can host or download but only friends
can decrypt. Decentralization also provides robustness against censorship, internet outages,
and would-be social monopolies.

When you’re offline, your friends could distribute your profile, and to keep it always
online, you could pay for hosting with your data (let them decrypt it) or your money, host
it yourself, or even get hosting through your school or workplace. You could use a free
open source client, one that shows ads, or one which charges a premium—your choice. If
your current client starts misbehaving, you can switch to any other with zero friction. Your
friends won’t even notice. Perfect competition between hosts and between clients.

The key to this decentralized paradigm is not merely security, which is not too hard with
public key cryptography, but user friendly security, which lets us have the conveniences we’re
used to in centralized systems, but keeps the network secure and open to anyone interfacing
with it in whatever way they please.

We achieve these features, including confidentiality, metadata hiding, profiles, friend
networks, instant messaging, groups, and much more through a carefully constructed profile
file tree distributed peer to peer over IPFS. It can be easily updated, distributed via deltas
rather than bulk transfers, and hosted without being able to glean any information about
that user. Offline or network-partitioned use is natural for our system, and it will handle
such network difficulties gracefully—spreading data to what peers it can reach and recovering
effortlessly once the partition is resolved. Most importantly of all, it lays the foundation for
a secure system that people may actually want to use.

3 Related Work

The idea of alternative social networking services that give users more agency is not new.
However many of these social networks have deficient properties. They either provide a
compromised form of “decentralization”, or are hard to use.
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3.1 Mastodon

Mastodon[1] is a popular “decentralized” social network. Unlike Facebook or Twitter,
Mastodon is not compromised of a single governing entity. Instead, Mastodon is made
up of a collection of independently controlled “federated” servers, called nodes. Users de-
cide which node they want to join based on its policies and other users, and then their
Twitter-like community is confined to the participants on that node. However, Mastodon’s
federated approach to decentralization is, in our opinion, somewhat lacking as nodes are not
very interoperable and users still have to choose and trust some 3rd party node.

Figure 1: Centralized, Federated, Decentralized

3.2 Secure Scuttlebutt

Secure Scuttlebutt[2] is a protocol for building decentralized applications that work well
offline and that no one person can control. The protocol currently offers secure communica-
tion between peers, allowing the platform to be leveraged for various applications including
that of a social network. Peers all have an identity that’s permanent. Peers constantly
broadcast UDP packets on their local network advertising their presence and communicate
through their peers. Though Scuttlebutt is decentralized and allows for peers to securely
communicate, it is not designed for an internet-scale social networking application. Relying
on peers to receive updates is very limiting.

In the simple example of two friends, f1 and f2, who lack mutual friends. Let’s say f1
posts a funny picture of a cat and all of his friends but f2 are online to receive the update
u. Shortly after, f1 goes offline. f2 comes back online and does not receive u because none
of f2’s friends have u but f1. Then, f2 will not receive said picture until f1 is online and
needs to wait an indeterminate amount of time. This is not a good model with which to
build the type of social networking experiences we see today, like instant messaging.
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4 Design Goals

4.1 Data Ownership

Today, social networks control your data and are mostly free to use and abuse it, sometimes
without users’ permission. We desire a system where users have complete ownership of their
data. Users should have control over who can see what in their profile with fine granularity.
For practically every piece of information in your profile, the user can set read permissions.
This applies to nicknames, posts, messages, subscribers, who the user subscribes to, etc.
But most of all, users should not have to reveal any information to any 3rd party in order
to use this social network.

4.2 A Universal Social Profile

There are too many social networks users must maintain independent of each other: Face-
book, LinkedIn, OkCupid. We believe this to be a failure of the current centralized paradigm
with regards to web applications. Users are forced to take the extra step to grant permissions
for applications to use data from other applications in order to stitch their social networks
together. The resulting product is unsatisfying and users have trouble finding their friends
on every new platform they join. We’ve designed a platform where third-parties can create
custom experiences for any social networking service[3] by providing the basic capabilities
for users to construct a profile, articulate a list of subscribers, and view and traverse the
connections those users are subscribed to. As an additional benefit, such an open plat-
form would have many interchangeable options for clients people can use to interact with
it, leading to much more direct competition between them than we see today. The more
competition there is, the higher the quality and lower the costs for users.

Figure 2: Akasha: Ethereum-Based Social Network. Clean UI, but requires a Chrome
extension, Ethereum wallet, and their own cryptocurrency to use it.
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4.3 Easy to Use

It does not matter how secure or theoretically satisfying a system is, it will never gain
adoption unless people actually want to use it. In order to solve the problem of centralized
monopolies, we must ensure users have all of the nice features they are used to from things
like Facebook. Many alternative secure or decentralized social networks fail this basic test.
One such alternative, for example, requires a chrome extension, Ethereum wallet, and a
cryptocurrency payment to make posts (Figure 4.2). Others are not fully decentralized,
and require you to choose and at least partially trust some federated third party “node” or
“pub” server.

Beyond those basic pitfalls, being decentralized allows us to provide additional features.
Our platform does not rely on the online status of you or your peers to interact with the
network. We can also provide features allowing users to quickly gather friends to help
mitigate network effects that resist transferring from prior social networks. Of course, our
system must also include the common suite of features in modern social networking services.

4.4 Reliable

Users should always be able to view their profiles. As users are no longer bound to the
performance of Facebook servers but to the performance of computers all across the world
on a globally distributed peer-to-peer system, users should be able to view the latest content
from their friends all the time.

5 Prerequisites

Our design is built on top of IPFS[4] and relies on many of the abstractions that it provides.
We chose to use IPFS because it solves many hard problems for us, including the addressing,
networking, and transport layers, a well connected swarm of peers at all times, and (with
IPNS) the beginnings of a public key infrastructure with a mutable key-value store.

In this section we review additional details of IPFS, highlight some key abstractions,
and make note of any assumptions we have on their capabilities for the sake of our design.

5.1 IPFS

IPFS is a peer-to-peer distributed file system across the entire internet. IPFS enables us to
have users interact with their social network without some central entity.

Overall we focus on the following details of IPFS.

5.1.1 Retrieval: Distributed Sloppy Hash Table (DSHT)

IPNS, the naming system explained more at length below, relies on a Distributed Sloppy
Hash Table (DSHT) to map public keys to profile hashes. We first review the more basic
variant, Distributed Hash Table (DHT). DHTs allow for fast lookup similar to a hash table
(key, value) in a peer-to-peer network made up of many nodes. This is critical to retrieve
files in a p2p file system and is used in applications like BitTorrent. The DHST, most
notably, does not store large objects in the DHT but instead stores references to those
objects, to save on bandwidth. Also, it provides secure identity generation with a proof-
of-work to make Sybil attacks expensive. Below are the data structures used for data
generation.
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The keys are typically generated via RSA and the multihash format looks like the
following, where there is a short header specifying the hash function used:

<f unc t i on code><d i g e s t length><d i g e s t bytes>

This allows for the system to use different parameter choices and remain compatible.

type NodeID Multihash
type Multihash [ ] byte
// s e l f −d e s c r i b i n g c ryp tog raph i c hash d i g e s t

type PublicKey [ ] byte
type PrivateKey [ ] byte

type Node struct {
NodeID NodeID
PubKey PublicKey
PriKey PrivateKey

}

Figure 3: Node Data Structures

5.1.2 Networking

In addition to providing secure node identities and routing via the DHT, IPFS provides
a network stack for communicating regularly with nodes across the internet. The stack
can provides reliable transport, integrity using a hash checksum, authenticity using HMAC,
and the ability to foster high connectivity traversing NATs. To encourage data distribution
among the peer-to-peer network and lower latency during DHT lookups, IPFS operates a
protocol akin to BitTorrent where data is exchanged by peers in a repeated game.

5.1.3 Immutable Storage: Object Merkle DAG

IPFS stores data in an Object Merkle DAG, a directed acyclic graph where links between
objects are cryptographic hashes of the targets embedded in the sources. What this allows
for is content addressing, where all content is uniquely identified by its Hash , including
links.

type IPFSObject struct{
l i n k s [ ] IPFSLink
// array o f l i n k s

data [ ] byte
}

type IPFSLink struct{
Name s t r i n g

Hash Multihash

S i z e int
// s i z e o f t a r g e t

}

Figure 4: IPFS Object Format
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By virtue of being a Merkle DAG, IPFS is also able to verify content using the crypto-
graphic hashes of the object and its links. Another effected of the links is that objects can
be referenced with string path lookups, such as /longuglyhash/foo/bar/baz, emulating a
filesystem. When performing the lookup, IPFS resolves the first path component to a hash
in the object’s link table, fetches that second object, and repeats with the next component.

Typically, nodes store objects on their disk space. Nodes who want an object to persist
on the network can simply keep that object in its local storage forever, making the object
permanent. For objects to be distributed by that node, nodes can simply add the object’s
hash to the DHT, thereby adding themselves as a peer who can deliver said object, and
giving other users the object’s path.

Immutability due to the hashing in the Merkle DAG is both a benefit and a drawback.
Objects cannot capture mutable state. Thus, clients must be informed of new content out
of band (likely a direct peer-to-peer connection) or via the DHT. That is where IPNS, the
InterPlanetary Name System comes in.

5.1.4 Mutable State: IPNS

First, let’s recall that NodeId = hash(node.PubKey) . Now, to publish an object at a
consistent address, IPNS provides every node a mutable namespace at /ipns/NodeId .
Thus, to create mutable state,

1. Nodes can publish an object to this path Signed by their private key.

2. When other users retrieve the object, they can check the signature matches the public
key and NodeId, verifying the authenticity of the object published by the user.

Publishing this object relies on a similar process as in IPFS. IPNS (1) formats the object
as a regular immutable IPFS object, (2) publish its hash on the DHT, keyed by the NodeID

.

5.2 Key Abstractions and Assumptions

1. Object Merkle DAG The Object Merkle DAG governs the way we store data. This
of course has major ripple effects on the way we have designed our system. To access
an updated profile, users must check for a new content address through IPNS, then
load the immutable object associated with it. The bulk of the design is then how we
store data so our platform is as secure, performant, and usable as possible.

2. Cryptographic Hashing We make use of hashing frequently in our design. We use
it for node generation, IPNS verification, content addressing, and metadata hiding
(e.g similar to how one might securely store passwords).

Assumption 1: There exists a family of hash functions providing security
(under the Random Oracle Model) from computationally bounded adver-
saries.

3. Object Pinning Nodes can permanently store objects by simply storing data, typi-
cally on their node’s local storage, to keep it available to the network.

Assumption 2: IPFS’s incentives guarantee reasonably fast retrieval of
content so as not to be disruptive to the user experience.
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This is quite an assumption as there are no hard incentives (i.e the monetary kind)
to incent users to store content of no value to them on IPFS. Currently, users are
weakly incentivized by the promise of increasing their reputation on the network and
getting more in return. This is still an ongoing research problem and we have identified
technologies that we feel introduce better incentives and could include in our system
as future work (see section 9).

4. IPNS We rely on IPNS as a failsafe (after direct connections) to propagate new content
to users. Thus, every time the user produces new content, it must be propagated
through IPNS, and it must replace the old entry.

Assumption 3: IPNS maintains the most recent update and allows for
updates that are performant enough. We have found IPNS to generally be
somewhat slow, which is why we aim, as part of our system, to have friends who are
online at the same time be connected directly to each other. This will both make
IPNS lookups faster and allow for push notifications from peers on profile changes.

Figure 5: How IPFS and IPNS are used in our system.

6 System Description

6.1 Profile

Each user has a public/private RSA key pair. We will refer to this key pair as a user’s master
key pair( rsa-public , rsa-private ). This key pair is used for their IPNS identity, which
allows them to publish one entry in the DHT. Each user stores the hash of their profile as
their entry in the IPNS DHT using this master key pair. This IPNS entry will allow anyone
to resolve the user’s rsa-public to the user’s *profile* stored in IPFS.

A user’s private and public data is stored in their profile , which is an IPFSObject

and can be thought of as a directory. This object links (via hashes) to other files stored in
IPFS and logically include any amount of data in this way. See section 5.1.3 for more.

9



profile -- top level

device keys

enc(device-key, JSON containing device name and master-symmetric-key)

...

subscribers (effect: now have shared secret with each connection)

enc(friend1-pk, ‘‘Hello <friend1-pk>:’’ || f1-shared-secret (new symmetric key))

...[list of blobs indistinguishable unless you decrypt with the right secret key]

groups (big list of folders that only has meaning if you know a secret, described below)

bio

salt

hash(salt || group-secret).json (encrypted with group-secret)

name (note: these can all be different/omitted for different groups)

profile picture, other info, etc (same deal)

addresses (list of multiaddrs, used to connect p2p for optimizations)

subscribing ‘‘friends list’’ visible to this particular group

...

...more group JSONs ...

(optional) public.json (contains plaintext name, profile picture, etc)

posts

year

salt -- but you can also add a new salt at any level to hide more metadata

month

day

hash(salt || group-secret) (folder)

lots of ‘post’ objects for that day

private (miscellaneous, decryptable only by the user. more below)

Figure 6: Profile file hierarchy. note: pk = public key (usually friend’s RSA key), and all
other keys and secrets are symmetric keys
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All forms of interaction (aside from optimizations we will mention later) in our system
consist of users changing their profile and reading data from other users’ profiles. Users may
PUSH updates to their profile, and users may PULL updates to others’ profiles.

Our choice of IPFS and IPNS have two requirements for maximum availability. First,
users must *pin* their data on IPFS in order for it to be readable by others. This can be
done on a user’s own computers or by an untrusted service (since the data inside the profile
is encrypted). Next, users must publish IPNS records linking their public ID (RSA public
key) to the hash of their profile, at least every 24 hours to prevent expiry. If a user does
not do both of these, their profile will not be resolvable or unavailable to other users.

We decided to use IPNS/IPFS instead of users communicating directly peer-to-peer as
in Secure Scuttlebutt because it enables our Always Reliable design goal. We want users to
be able to see their friends’ data immediately after going online without manually trusting
intermediate nodes, and the state kept in the DHT even when a user is offline allows for
this.

The profile stores a lot of metadata, much of which is only readable by specific other
people. This is all pointed to by IPFS links. See figure 6 for a summary of everything in
the profile. We will describe each item in the profile in the following sections.

6.1.1 Access Control

Users may want to encrypt data to only be readable by a set of people in their social network.
We accomplish the above by establishing a shared secret for the set of users a user wants to
share data with. Then encrypt data readable only to those users with that shared secret

6.2 Following and Friending

The whole point of “Friending” someone is to establish a shared-secret (in this case, a
symmetric key) with them, both to allow secure communication and so that you can publicly
refer to them in a way that only they can recognize. It comes down to the problem of having
a folder full of encrypted files. How do you indicate to this friend which one is for them,
without indicating the same anyone else? With only public key crypto, you could not give
it a deterministic file name, since you do not know anything that another person with the
friend’s public key does not. The only way to get the message to them is to make them test
(decrypt) each encrypted file in the folder until they found one that came out nonrandom.
With a shared secret only known by the pair, you can indicate which file is for them up
front (by hashing the secret) and then they only need to decrypt that one file. As you will
see throughout this section, we make extensive use of this convenient feature of the shared
secret.

To follow a user entails periodically reading that user’s profile. Subscribers are syn-
onymous with followers in our system. “Friending” occurs when two users follow each
other. A user stores the list of identities they follow in the private section of their profile
(encrypted under the master symmetric key).

Alice and Bob become friends as follows. Alice encrypts “Hello <Bob-master-pubkey>

:”|| shared-secret (symmetric AES key) under Bob’s master pubkey and places the result
in the subscribers section of her profile. Bob does the same, encrypting a different shared
secret using Alice’s public key and placing it in the subscribers section of his profile. This
is the only time a subscriber will have to sequentially test decrypt a list of files to see which
one was encrypted with their public key. The result is that both of them have established a
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group -- folder name actually random

salt

hash(salt || friend1-shared-secret) (file)

enc(friend1-shared-secret, list of group-secrets (symmetric keys))

...other subscribers in this group ...

(optional) info.json (encrypted with group-secret)

(optional) member list

person1-pubkey → nickname

...

(optional) group UUID

(optional) group name

(optional) child groups + possibly their secret keys

Figure 7: What one group looks like in that list in the profile. The (optional) elements are
used for multi-user groups (see section 6.6).

different shared secret with each other. This allows both faster encryption and decryption
as well as the type of communication mentioned above, upon which we build groups

¯
and

everything else (see section 6.3).

6.3 Groups

To truly own their data, users must be able to determine who can read what they store on
their profile with fine granularity. It is also desirable to only encrypt each post once, instead
of once per person that can see it. That is where the groups folder comes in. Each user
creates a unique group and key for each audience they wish to publish to. They encrypt
all data published to a given group under the most recent group-key (symmetric AES
key). A user shares group keys with other users by encrypting them with each person’s
friend-shared-secret and storing the result in a list in the appropriate group folder,
under a file name generated from some salt and the friend-shared-secret so as to only
be recognizable by them (see figure 7). By default, groups are similar to mailing lists—data
encrypted with a group key is readable to all recipients who know that group key, but they
cannot tell who else is in the group. Note that they can tell how many people are in the
group—we actually view this as a feature, because it is then clear whether someone else’s
post is an important direct message or spam sent to a wide audience.

More on what the optional fields are used for later.
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Post Format

version

meta.json - file enc with group-secret

list of parent threads (what it’s replying to, missing if top level thread)

timestamp

type (post, react, read-receipt, etc.)

(optional) tags

content (can be anything)

Figure 8: Format of IPFS file storing post contents

6.3.1 Removing Group Members

One may remove someone from a group as follows. First, they remove them from the group
membership list. Next, generate a new group-secret key and prepend it to the list of
group secrets for all remaining members of the group. All future posts to a group must be
encrypted with the new secret.

This prevents the removed member from reading any new messages to the group, though
it allows them and everyone else in the group to continue to read previous messages without
having to re-encrypt them. One may re-encrypt all old data with the new group secret if
they wish, but this would require re-upload of all data each time a member is added or
removed from a group and likely break any links from other posts.

6.4 Sharing Content

The simplest example of sharing content is the bio folder. In this folder is a series of
JSON files encrypted with various group-secrets . That JSON could include things like
your name, profile picture, friends list, etc. that you wish to be visible to the people in the
group associated with that key. Remember that group membership is not visible, but an
adversary may learn some metadata by correlating which groups are used where and how
often. In order to hide this, we use a random salt in many places of the profile and then
refer to a group as hash(salt||group-secret) so that the same group will look different
to an adversary in different places, but will always be recognizable by members of that
group (and furthermore, findable in O(1) time rather than O(n)). This is how we name
the encrypted JSONs so that group members can find them easily. Of course, you may also
have a public name and profile picture in that folder.

6.5 Messages, Read Receipts, Reacts and Other Posts

The main way of sharing content on a social network is posts and messages, which we treat
the same underneath and leave the UI to make a distinction given the context. Like with
the bio , we hash group-secrets with salt to discretely refer to groups, but there are
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two distinctions here. First is that there are many subdirectories of the posts folder.
This is for performance reasons, since there will be many more posts than groups, and this
allows users to download only the most recent day or month of posts rather than all of them
at once every time. Second is that the post object is not itself encrypted, it is split into
two encrypted pieces—the metadata and the content. This is so friends can host all of the
necessary metadata to make sense of each others’ profiles and posts without having to store
large images or videos. That burden is left to the original poster to figure out, but note that
they can use a service like Dropbox or Google Drive to host these without trusting them
since it’s encrypted.

Another feature is threads, so it’s clear what is being responded to. Users seem to value
this feature in Slack so we have added support for optionally referring to parent posts so
that the UI can bundle messages in the same thread.

Read receipts are another common mechanism in social media platforms to let the sender
know you have received a message. In our system, each message has a type that lets the
UI know how interrupt the message. So as long as all parties agree on what a type means,
they can be anything. For read receipts, we could agree upon some unused type, then let
the parent refer to the message we are marking as read. Similar solutions for reacts, but
the content could also be used to specify the specific type of reaction.

6.6 Group Chats

Until now, we have discussed groups much like bcc’ed mailing lists, thinking about profile
data mostly as “posts” to an audience. However, users often wish to communicate in more
of a “group chat” or even Slack workspace type of group. For these we may use the term
“messages” instead of posts, but underneath they are the same thing and only the context
changes the terminology. This is what the optional group info is for.

A group chat is comprised of multiple profiles with groups that have the same group
UUID (universal unique ID—just a large enough random number) in its metadata (see Figure
7). Importantly, no other state is synchronized, and users do not have to use this UUID
unless they wish for some messages to be considered “in the same group” as some messages
from other people in the UI. Each member of the group controls their own group-secret

and stores a copy of the member list and other group info. When a group member sees
additional members in another membership list (and often a corresponding message), they
add the new members to their own list. Because there is no verification, it is possible for
membership lists to be incomplete or contain extra accounts. The specific audience each
user broadcasts to is at their discretion, but by default we expect people will want to keep
it roughly in sync with the other group members. A benign example of not synchronizing
is if different people wish to have different nicknames or group names for the same logical
chat. Another reason to allow your group state to drift from the others is if you wish to
block or mute other users in the chat, where it wouldn’t affect everyone else.

6.6.1 Joining a Group Chat

The easiest way to join a group chat is to be invited. To do this, a current member adds them
to their own copy of the group and membership list (and often will send an accompanying
message). The new member can now see at least the copy of the group information of the
person who added them and can create a group with the same UUID (and by default the
same member list) on their profile.
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Once the new member is on the inviter’s membership list, when other users go online
they should see the new entry and (by default) add the new member to their copies of the
group. The new member will eventually be able to see posts by all other users in the group
as each one of them adds the new user. If users wish to avoid this slower process of people
being added, they may use the same group-secret as other members of the group. This
way, a new member could find out the secret from one person and immediately have access
to the past messages of anyone else using that symmetric key for their copy of the group.

Note that a member of a group will only see group posts by other people in the group
that they follow, because group posts are read directly from profiles. However, this should
not be a problem because they know who to follow from the membership list of the person
who added them.

The other way to join a group is to know the group secret key and add yourself.
Since a user would discover that through a child group, we discuss this method for joining
in the next section.

6.6.2 Child Groups

Some social media and chat applications, such as Facebook and Slack, allow groups within
broader organizations. In Slack, all members of a workspace may preview and join any
public channel under that workspace. On Facebook, a broad MIT group contains many
subgroups. In each of these, members of the top-level group are able to read messages in
lower-level groups without joining them. We allow this multi-level hierarchy in our system
with child groups.

The child groups section of each group folder (see Figure 7) is where users can indicate
that another group is a child of that one. If they do not include the group key, then this is a
“private channel” (to use the Slack parlance), meaningful only to those already in it. If the
secret key of the child group is included, then members of the parent group may decrypt the
child’s info and posts to preview it. If they like what they see, they can add themselves to
the group—knowing the member list and UUID from having decrypted it, they can create
a group of their own with the same UUID and members, and broadcast a message to the
other members that they have joined. The other members must be subscribing to this user
to see that message at all, but presumably this is the case since they were already in the
parent group together.

6.6.3 Leaving a group

To leave a group, a member may stop checking the group for updates and post a request to
other members to remove them from their copies of the group. There is no guarantee to be
removed from membership lists, but the user is under no obligation to check other profiles
for updates to that group any more and the UI can ignore them.

6.6.4 Removing a group member

A member removed from a group must be unable to read future data published to that group.
If Alice wishes to remove Bob, she must do two things. She must change the group-secret

as in Section 6.3.1, but now also must alert the other members of the group. She sends a
message to the group saying she’s removing Bob so they too can remove Bob from their
copies of the group.
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If someone does not perform this process, their messages will still be visible by the
partially-removed member. However, the partially-removed member will be unable to see
messages from anyone else in the group so we argue this is fine.

We decided against implementing any form of traditional access control for groups, such
as having specific admins that may add and remove users. This is because achieving con-
sensus and guaranteed access control in a distributed system of untrusted parties is a hard
problem. For groups of well-behaving people, an admin could simply be a user whom ev-
eryone has agreed to only and automatically accept membership changes from.

6.7 Multi-Device Support

Users have multiple devices. We want a social network identity accessible through any
number of devices a user owns. However, key management is hard. Usernames + passwords
are more familiar and understandable to users, making our system more usable as well as
allowing a seamless transition from other social media.

When a user first creates a profile, that user selects a username, password, and birth
date (MM/DD/YYYY). We use these three to generate a private/public RSA key pair for
an IPNS identity. Next, we make that IPNS identity point to this new user’s profile. Finally,
we store one copy of the master key pair encrypted with the new public IPNS key in the
”device keys” section of the profile (see figure 6).

In order to access their identity from a new device, the user may re-enter their username,
password, and birth date. This new device can generate the public/private key pair for the
IPNS identity described above, see the existing entry, view the existing profile, and read the
encrypted master key pair. After this, the user is logged in.

An attacker could find a username, password, and birth date that generate the key pair
used for this and decrypt the key stored in the user’s profile. So, it is important that this
function is one-way. The birth date serves as a ”salt” that increases entropy.

More generally, IPNS entries and profile entries similar to the above can be created for
multiple ”device keys.” This method can be extended for e.g. Yubikeys, password managers,
and device-specific secret stores or keychains.

7 Lower latency via peer-to-peer communication

When a user connects to the network after the while, they have to scan through all their
friends’ profiles to see all the messages they have sent. Messages are separated by groups.
So, for each friend, you would have to scan through all the shared groups you are in and
then download all the messages they have sent since the last recorded message. The runtime
of this naive approach would be O( #Friends + #Groups + #Posts). We can improve this
runtime by lazy loading. Instead of downloading all the message, you could download the
last C messages or only the messages in the last unit of time. If the user wanted to see more,
they could choose to load more. This is a very common feature in existing centralized or
federated platforms.

They way we described the system involves reading/writing to the profile. While this
is needed for robust communication, it is inefficient, because it requires users to constantly
poll for changes in their friends’ profiles. For real-time messaging, this would cause high
latency. Instead, if possible, users may create a peer-to-peer connection with their friends.
When a change is made to a user’s profile, the user may notify all of their online friends
that a change was made. This enables real-time updates with minimal latency.
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8 Evaluation

8.1 Security

When designing our system, we wanted to guarantee users would be able to own their
data. In a centralized model, users trust a third-party to safely secure their information,
granting ownership to the third-party. Here, the user must only ensure the channel between
themselves and a social networking service like Facebook is secure(e.g avoiding attacks like
MITM and Phishing). From there, the burden of responsibility for the information is on
Facebook(which recent events have shown is not the most wise). In IPFS, unlike a centralized
regime, the threat model is a bit more intimidating. Users maintain their own profile but
now route said profile through a p2p network of nodes, some we can trust and some we
cannot. Thus, unlike the centralized regime, adversaries can now read user’s information
without having to eavesdrop on a network or phish for passwords. In the following sections,
we’ll go over our threat model and address how our system guards against these threats
allowing users to independently maintain their profiles without worry.

8.1.1 Threat Model

When designing our system, we considered a computationally bounded adversary who is
interested in the following:

• Reading sensitive profile updates

• Associating someone’s profile with their real-life identity

• Tampering with profile content

• Writing fake profile updates

We provide the security guarantee that an adversary is immune to these threats(except
the identity association when the adversary intercepts network activity) as long as they use a
sufficiently strong password. Our system is vulnerable to an adversary intercepting network
activity and correlating activity patterns between nodes and peers. We investigate how to
mitigate this in section 9. When discussing identity, we assume adversaries do not correlate
network activity. In the following sections, we review how a user finds their rsa-key-pair
and how said key pair enables the aforementioned security guarantee.

8.1.2 Multi-device Login

Only the profile owner knows their rsa-private . The user retrieves the ( rsa-public

, rsa-private ) pair by logging into their profile with their username/password/birth-
day(see 6.7) . Provided users use a strong password, according to Assumption 1, no
computationally bounded adversary can crack their login.

However, a major limitation of owning your data in a decentralized regime is the lack
of a trusted third-party to help recover login information. In the centralized regime, users
trust Facebook to maintain their login information and help them recover said information
if they lose their password. In a decentralized regime, a user must guard their own login
information with no third-party help. Revealing said login is a clear no-no as that would
compromise their profile by revealing the rsa-private . If a user was to lose their login,
they would lose access to their profile. Therefore, we strongly suggest users carefully devise
a method to guard their password.
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8.1.3 Privacy

Due to our system’s implementation of access control, our system provides a good guarantee
of confidentiality. All sensitive information is encrypted using one of AES and RSA. No
secret keys are made visible and due to our adversary being computationally bounded, we
can be assured that we will be secure against attacks. We also hide the groups, subscribers
a user is a part of to guard against adversaries pinpointing the identity of a user from the
identity of their friends and groups as explained on how we perform metadata-hiding(see
??) and is secure according to Assumption 1.

We do leak some information. First, we don’t hide when your profile changes. So if it
was someone constantly polling your profile, they could see you changed some field or sent a
message but could not see the new value is or learn any more about the message. Of course,
if desired, this data leak could be spoofed by just making frequent, arbitrary changes to
ones profile so an adversary could learn nothing. We also leak the size of the profile, so
adversaries could determine whether a profile is that of a significant figure based on it’s size.
We believe users, if this is a concern, can simply add noise to their profile to mitigate this.

8.1.4 Spoofing and Tampering on IPFS

Content addressing ensures that adversaries cannot tamper with content and IPNS(see
5.1.4) ensures adversaries cannot spoof profiles. These guarantees ensure adversaries cannot
publish fake updates. For example, if an adversary was to alter a post, a subscriber would
detect it when comparing the post with the content address from the user’s profile received
from IPNS. And if an adversary tried publishing a fake profile, IPNS ensures subscribers
would detect it, assuming the adversary is computationally bounded and the node key pair
is not revealed. Thus, all content subscribers see is authentic.

8.2 Features

One of the goals of the system is to achieve a level of privacy while maintaining the same
conveniences of a modern social media/group messaging application. The system as de-
scribed naively supports simple group chats, but more complicated features can be built
on top it including admins, read-receipts, custom reacts etc. It is easy to set state and
implement arbitrary functionality because the method of sending messages is so general.

8.2.1 Basic Features

The system can clearly handle the following features, as described below.

• Privacy(e.g Access Control, Metadata-hiding)

• Instant messaging/ Group Chats

• Read Receipts, Reacts, Mentions and other metadata posts

• Replies comments/threads/etc

• Multi device support

• Sign-in with username/password

• Nested groups
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However, given how general the core components are, there are some additional features
which take only a little more effort to obtain.

8.2.2 Deletion

To delete a message, send a post with the deletion type and the parent being the message
you want deleted. Other clients will see your deletion request and can then choose to not
display that message. This is functionality similar to many other applications; if you delete
a message before anyone sees it, then nobody will ever see it. Unfortunately, it people have
seen the message, then you can only politely ask them to honor your deletion request. Since
they already have the message downloaded, they could have immediately taken a screenshot
and there would be nothing our program to do to counteract it. While certain platforms
may brag on their ’self destructing messages’, messages that disappear after they are seen
once, they don’t really do anything more than politely asking. They may, however, enforce
that a message may only be downloaded once per user. Such a restriction is impossible in
our platform as a user has no reliable way to know when someone else views their profile.

8.2.3 Friend Discovery And Requests

A trade off between user privacy is user discovery. Since we don’t have a index of users and
users can have arbitrary amounts of information hidden, we cannot do a global look based
on common factors like name or location in general.

One method of discovering friends, is offline/through some third party site. As men-
tioned earlier, you can exchange public keys and then exchange messages easily. Instead
of physically meeting up, you could just paste your public key in a different social media
site. If neither option is desired, we recommend looking at your friends’ friend list. Your
friends could have list of people they talk to publicly available in their profile. In such cases,
you could browse through the union of these list which you could search by name. Current
social media platforms often assume you are more likely to looking to friend someone if
you already have mutual friends to this assumption is not unrealistic. Depending on your
friends, you could keeping searching in this manner to an arbitrary depth.

However, knowing who you want to friend is only half the battle. No one will receive a
message from you unless they know to look at your profile. So you won’t be able to message
them to see if they want to receive a message from you. One solution is to immediately
start the friending handshake with some subset of your friend’s friends. If they also want
to be communicate with you, they will have done the other half and now a connection has
been established.

8.3 Flexibility

We aimed to design a universal social networking platform that supports all the standard
social media features without sacrificing privacy. We provide a robust privacy model that
gives users full control of who can see their data. We implement an impressive set of features
that cover the main cast of affordances expected of social networking services. In additional,
our system supports a wider range of features that 3rd parties could add on. For example,
third parties can augment posts through meta.json to support reacts and implement
Slack-like channels with multi-level groups. Lastly, our design is open thereby opening the
flood gates for many different front ends which will let users customize their experience. So
did we accomplish our goal of creating a universal social networking platform? We hope
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so. With more users and third-parties adding custom experiences, we believe it will be
interesting to see if our system is as flexible as we think.

8.4 Scaling and Reliability

With our optimizations, our system scales with the number of friends and number of groups.
This doesn’t scale well to arbitrarily large friends/groups. However, we don’t believe this
will be a huge hindrance in practice. The average number of Facebook friends is under 400.
We also anecdotally observed that number of multi-person groups seems to be smaller than
the number of friends. We believe this is due to not being equally likely to talk any subset
of friends at once. With these assumptions and lazy loading we arrive at a runtime solely
proportional to the number of friends.

With IPFS, we also do not run into problems like in Secure Scuttlebutt. Once a user
publishes an updated profile to IPNS and pins it, subscribers can eventually view the content
according to Assumptions 2 and 3.

9 Future Work

We are extremely pleased with our system currently, but we believe there is room for im-
provement. We would like to delve deeper in the following areas:

9.1 Group Moderators

We would like to investigate group roles. We believe a good example is that of Reddit.
Think of Reddit moderators and Reddit Owners. These are two different classes of users,
where moderators are delegated their roles by the owner of the subreddit. Above the Reddit
Owner is the Reddit Admin, who has the ability to govern all activity on the site. We believe
exploring an abstraction to flexibly allow for different privileges among group members can
lead to an even easier experience for developers to create their desired applications. A
promising approach would be to have the owner of the group serve a role similar to that of
the Reddit Admin and delegate roles to others, with the option of giving them the power to
delegate roles as well. This creates a flexible hierarchy of roles and privileges that we think
can be adapted to any group.

9.2 Trusted Timestamps

Currently, when users send each other messages, there is no central authority that can
be used to time stamp messages. We would like to consider a design that makes it easy
for developers to allow for a trusted timestamps. This is enabled by some trusted third-
party, a Trusted Timestamp Authority that signs a hash of the message appended with the
timestamp.

9.3 Network Anonymity

ISPs have the ability to use network activity to discover a user’s friends, whether through
IPFS or direct peer-to-peer. For some users who desire stronger anonymity, this would
be undesirable. We would like to investigate the effects of incorporating optional onion
encryption(e.g Tor) in our system to mask a user’s network activity.
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Put(data) -> key: Clients execute the PUT protocol to store data
under a unique identifier key.
Get(key) -> data: Clients execute the Get protocol to retrieve
data that is currently stored using key.

Figure 9: Example API for FileCoin[6]

9.4 Generalizing to Social Media

We designed our system with social networking services[insert reference] in mind. However,
we believe our platform could also support the gamut of social media as well. In addition to
social networks, we can support personal blogs trivially but would also like to be able to sup-
port social media like large forums(e.g Reddit), social gaming(e.g Twitch), video sharing(e.g
Youtube), collaborative editing(e.g Wikipedia). We believe these applications provide the
challenge of aggregating group state where the size of the network is unbounded(i.e scal-
ing becomes an issue since personal social networks are relatively small). In the medium
case(thousands of people), we believe group aggregation can be done by simply designat-
ing users who offer to retrieve and aggregate data, perhaps as a group role. In the larger
case(tens of thousands and up), we believe we need a better scaling solution.

9.5 Scaling to Billions of Users

The weak incentives provided by IPFS for storage and retrieval of data does not provide a
convincing guarantee of performance. Especially in regards to large groups. Luckily, there
are solutions[5,6] that use the blockchain and cryptocurrency to provide a stronger incentive
of storage and retrieval of data with a similar API to that of IPFS’s DSHT. In this regime,
we believe we can reliably provide a decentralized solution, putting to rest Assumption
2, and provide performant mutable state updates, dealing with Assumption 3. Users will
be able to instantly find groups of interest(of any size) their friends are in, see viewable
members, and browse content of any form(aggregated or not), allowing third parties to
create a wide variety of social media experiences.

10 Conclusion

Frustrated by the monopoly Facebook has, its practices regarding user privacy, and the
impunity it has enjoyed from transgressions like the Cambridge Analytica scandal, we felt
driven to seek an alternative that could truly replace it and provide an even better experi-
ence. After surveying the landscape and seeing the existing alternatives were underwhelm-
ing, we were driven and motivated to design our alternative using the security principles
we’ve learned as well as innovative technology in the p2p space.

We are proud to have designed a system that does exactly that. Our system delivers
on design goals that provide a system that has superior reliability and data ownership
compared to social networking services like Facebook as well as the alluring promise of a
universal profile that can be used for any social networking application. We provide strong
security guarantees and a platform that is flexible and scaleable to a user’s social networking
needs.

In the future, we believe our system could motivate work to support greater experiences.
Currently, our system makes a strong assumption on the performance of IPNS and the stor-
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age capabilities of IPFS. We believe on the scale of friend networks, we believe this will not
be a problem as nodes will deliver real-time updates through peers and occasionally provide
offline-updates through the less performant IPNS and IPFS. However, to cater to greater
social media experiences, we believe further innovation in the p2p space such as Filecoin
will incentivize faster retrieval and better storage that make decentralized applications more
attractive and hopefully make centralized monopolies like Facebook a relic of the past.
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12 Appendix

12.1 Attempted Prototype

We attempted to prototype a working model of our system for the class but found there were
many nuances(and lack of documentation) working with IPFS to get it in a good enough con-
dition. For those interested, our code base can be found at https://github.com/npfoss/gravity.
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