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1 Introduction

High-level taekwondo sparring competitions use electronic sparring gear, where points are awarded for
kicks that register as strong enough (past a certain threshold of power). As stakes get higher, such as
in the Olympics, there might be motivations to tamper with these systems for an unfair advantage. We
analyzed the security of the TrueScore taekwondo sparring system with respect to its confidentiality, integrity,
and availability. Our results show that the TrueScore system has several potential vulnerabilities in its e-
sock magnets, the dongle-computer USB datastream, the memory used by the TrueScore software, and the
RF communication between the hogus and controllers. We also describe avenues for future work such as
spoofing the USB dongle and conducting RF replay attacks.

2 Background

To determine our threat model for this analysis, we first sought historical examples of cheating in professional
sports with electronic scoring. We focused our research on electronic or mechanical cheating rather than
doping.

The earliest recorded example occurred in a fencing match in the 1976 Montreal Olympics. At the time,
épée matches were scored with an electronic system. The weapons were fitted with a “spring-loaded point
connected by fine wires that run down a groove in the blade to a plug inside the bell-shaped hand guard”.
The fencer also wore a “body wire” that ran from a spool on an electrically neutral strip on the competition
ground through the inside of their jacket sleeve. Once the fencer was ready to start a match, they connected
their body wire to the plug in their hand guard. The trunk of each fencer’s body was covered with a “metallic
overjacket”, which would complete an electrical circuit and light up the scoreboard if it detected at least 750
grams of pressure [1].

In this fencing match between the British pentathlete Jim Fox and the Soviet Union pentathlete Boris
Onischenko, judges discovered that Onischenko had a button installed in his épée that registered a hit every
time he pressed it [2]. In particular, there was a piece of wire connected to a thumb button hidden under
the épée’s leather binding [3]. Onischenko was disqualified from the Olympics, and Fox was flustered for
the rest of the pentathlon.

We also found instances of cheating in taekwondo matches. In 2010, Taiwanese athlete Yang Shu-chun
was disqualified from a match for placing additional electronic sensors (i.e. magnets) in a patch behind her
heel [4]. These additional magnets could make it easier for her to score points. She was later disqualified
from matches for three months by the World Taekwondo Federation (WTF). The WTF also disqualified her
coach for 20 months and fined the Chinese Taipei Taekwondo Association $50,000 [5]. This event and the
resulting controversy were dubbed ”Sockgate”.

3 Responsible Disclosure

Before attempting this project, we obtained verbal and written permission from Jin Song, the president of
TrueScore, to proceed. Our project is based on the Gen1 Daedo equipment, and TrueScore has elected to
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Figure 1: A general overview of the system.

delay the publication of this report by 6 months.

4 System Overview

The taekwondo electronic sparring gear system has six main components (Figure 1).

4.1 Electronic Hogu (Body Shield)

When the electronic hogu (Figure 2) is hit, one or more magnetometers in the hogu first determine whether
the impact is from a kick. If it is from a kick, piezoelectric force sensors evaluate the power of the kick by
the level of distortion of the hogu. A radio frequency (RF) transmitter then wirelessly sends the information
to the connected computer.

4.2 Electronic Helmet

Similar to electronic hogus, head shots are automatically scored with electronic helmets (Figure 3).

4.3 Electronic Foot Sensor Socks

Athletes competing in sparring competitions that use TrueScore’s electronic point scoring system are required
to wear e-socks (Figure 4). In these electronic feet gear, magnets are embedded in parts such as the bridge
and heel of the foot. Whether or not an impact is from a kick is then determined by whether or not the hogu
detects a magnet in proximity of the impact location.

4.4 Wireless Joysticks

During sparring matches, judges with joysticks (Figure 5) assist in the electronic scoring process. For ex-
ample, punches are manually scored (there are no magnets in the gloves, and punches are worth less than
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Figure 2: The electronic hogu (e-hogu).

Figure 3: The electronic helmet (e-helmet).
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Figure 4: The electronic foot sensor socks (e-socks).

Figure 5: The wireless joysticks and wireless receiver USB dongle.

kicks), and judges can also add technical points for difficult kicks (such as a spinning hook kick compared to
the roundhouse kick). These joysticks have buttons that score different point values for both fighters.

4.5 Wireless Receiver USB Dongle

A wireless receiver (Figure 5) is connected to the scoring computer and receives signals from the hogus and
the joysticks. When it receives a signal, it decodes the signal and sends it to the TrueScore software.

4.6 TrueScore Software

The software on the computer (Figure 6) calculates the amount of force with which the hogu has been hit.
If the force exceeds a pre-specified threshold, the software awards points to the fighter who made the hit.
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Figure 6: The TrueScore software’s control panel.

5 Approaches

5.1 Integrity: Enhance Socks with Magnets

Our most basic approach was to replicate the Sockgate attack by hitting the hogu with more than one e-sock
worth of magnets. As expected, this made it easier to score a kick, but did not increase the score of a given
kick. This is because the magnetometer(s) in the hogu are for detecting proximity, while the piezoelectric
force sensors in the hogu determine the kick score. These additional magnets only affect the proximity
detection.

5.2 Confidentiality: Dongle-Computer Communications

We listened to the messages being sent between the dongle and the Truescore software by using Device
Monitor Studio. After running experiments and recording the data captured, we discovered that the dongle
sends a constant stream of 13-byte messages to the software, which signals that it is connected and running;
these messages also serves as counters that keep track of the relative timings of events. Each event triggers
an additional 14-byte message, whether it’s a hit on a hogu, or a button press on a controller.

Below is our decoded results for messages triggered by an event:

• The first two bytes indicate the source of the message, whether it’s coming from the client (the hogus
or the judge controllers) or the server (the constant message stream from the dongle).

• The next two bytes describe the force measurement on the hogu, or which button was pressed on the
judge controller.

• The next two bytes contain the hogu or controller ID.

• This is followed by two constant bytes that we observe in every message.

• The next byte serves as a counter.
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Hogu→ Source (client

vs. server)

Force Hogu ID
const counter ?? const

Controller→ Button ID Controller ID

Example bytes 44 3D 02 C8 4E 7E 04 9A 05 B6 FF 0D FE 01

Example decode Client Force: 44 Hogu ‘N126’ 5th hit

Figure 7: Decoded results of the communication between the dongle and and the software.

Figure 8: Left: The scoreboard before the button on the judge controller was pressed. Right: The scoreboard
after the button on the judge controller was pressed.

• After this, we have a byte that we’re unsure of its purpose. One of our guesses is that it is an encrypted
counter or a MAC of the message to prevent replay attacks.

• Finally, we have four bytes that mark the ending of a message, which are constant except for rare
occurrences. We’re not sure why this is the case.

A tabular representation of this decoding scheme and an example message from a kick on a hogu can be
found in Figure 7. Decoded, we see that the kick registered a force of 44 units on hogu N126, and that it
was the 5th hit scored on that hogu.

We hope to use our results from observing the data stream between the dongle and the software in a few
of our other approaches, particularly our attempt to spoof the dongle and our RF attacks.

5.3 Integrity: Memory Editing & Software

Using the open-source Cheat Engine [6] project, we observed the way in which TrueScore uses the memory
allocated to it. We found that an intruder could easily determine which memory addresses were responsible
for scoring purposes. Each memory address is represented by eight hexadecimal characters, and using Cheat
Engine we were able to identify the specific memory address that stores the blue competitor’s score. This
makes it easy for an intruder to pick the target memory block, which is the vulnerability that we used.

Using the ReadProcessMemory and WriteProcessMemory functions in the standard Windows library, we
were able to manipulate the value of various memory locations by running a C++ script in the background.
Here are some that we implemented:

1. By editing the value of the correct memory address, we can set the blue competitor’s score to arbitrary
numbers, including negative numbers and large numbers (Figure 8).

2. We were able to force the blue competitor’s score to remain at zero regardless of what the competitor
did. The images below demonstrate this exploit in action (Figure 9).
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Figure 9: Left: Peter, the blue competitor, kicking Elizabeth. Right: Peter’s kick is registered as having a force
of 38 units, and the blue competitor’s score lights up, but his score remains at 0.

These approaches can potentially run undetected in the background of a computer compromised by
malware. Our recommendation to prevent memory editing attacks is to run the TrueScore software in a
virtual machine, which would add an additional barrier to such memory editing methods.

Another weakness of our approach is that the memory address changes between each execution of the
TrueScore software. In order for our method to work, the operator must intentionally identify the relevant
memory addresses for their particular instance of TrueScore before editing their values. However, in our
testing, we noticed that the last four characters of the memory addresses did not change between executions.
For example, the memory address storing the blue competitor’s score seemed to have the form 0x----9308,
even after restarting TrueScore. This value may be specific to the machine running it, however, so its utility
to an adversary without access to the actual computer running TrueScore may be limited.

5.4 Integrity: Spoofing USB Dongle

After decoding the dongle-computer communications in section 5.2, we attempted to create a mock dongle
that would be recognized by the TrueScore software as a real dongle. If we succeeded in this, we could send
messages to the software that appear to come from judge boxes or hogus. We could press a button on the
mock device, for example, that sends a message reporting a kick.

We ultimately were not able to get this device to be recognized by the TrueScore software by the end
of the project. Here, we document the approach we took and what we learned about the dongle in our
research.

The TrueScore USB dongle communicates via the USB protocol [7] with the computer. The device is
defined by its device descriptors, which can be accessed with libusb [8] through PyUSB [9].

DEVICE ID 0403:6001 on Bus 020 Address 029 =================

bLength : 0x12 (18 bytes)

bDescriptorType : 0x1 Device

bcdUSB : 0x110 USB 1.1

bDeviceClass : 0x0 Specified at interface

bDeviceSubClass : 0x0

bDeviceProtocol : 0x0

bMaxPacketSize0 : 0x8 (8 bytes)

idVendor : 0x0403

idProduct : 0x6001

bcdDevice : 0x400 Device 4.0

iManufacturer : 0x1 FTDI
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iProduct : 0x2 USB <-> Serial

iSerialNumber : 0x0

bNumConfigurations : 0x1

CONFIGURATION 1: 90 mA ===================================

bLength : 0x9 (9 bytes)

bDescriptorType : 0x2 Configuration

wTotalLength : 0x20 (32 bytes)

bNumInterfaces : 0x1

bConfigurationValue : 0x1

iConfiguration : 0x0

bmAttributes : 0x80 Bus Powered

bMaxPower : 0x2d (90 mA)

INTERFACE 0: Vendor Specific ===========================

bLength : 0x9 (9 bytes)

bDescriptorType : 0x4 Interface

bInterfaceNumber : 0x0

bAlternateSetting : 0x0

bNumEndpoints : 0x2

bInterfaceClass : 0xff Vendor Specific

bInterfaceSubClass : 0xff

bInterfaceProtocol : 0xff

iInterface : 0x2 USB <-> Serial

ENDPOINT 0x81: Bulk IN ===============================

bLength : 0x7 (7 bytes)

bDescriptorType : 0x5 Endpoint

bEndpointAddress : 0x81 IN

bmAttributes : 0x2 Bulk

wMaxPacketSize : 0x40 (64 bytes)

bInterval : 0x0

ENDPOINT 0x2: Bulk OUT ===============================

bLength : 0x7 (7 bytes)

bDescriptorType : 0x5 Endpoint

bEndpointAddress : 0x2 OUT

bmAttributes : 0x2 Bulk

wMaxPacketSize : 0x40 (64 bytes)

bInterval : 0x0

Many of the fields for this device differ from a common prototyping board like the Teensy [10]. We
modified the TeensyDuino core library [11] to adapt the Teensy’s USB descriptors and protocol to match the
TrueScore dongle. Here are a few notable changes.

• bDeviceClass: The device class is not specified at the device level (e.g. Teensy is 0x2), but rather at
the interface level.

• idVendor, idProduct: We changed the Teensy’s Vendor and Product IDs to match.

• iManufacturer: The TrueScore dongle is based on a TinyOS [12] board with an FTDI USB to serial
chip, so this field tells the computer to use FTDI drivers to establish communication with it. The Teensy
does not use an FTDI chip, which may have been why we had such a hard time getting the Teensy to
be recognized by the laptop’s FTDI drivers.

• iSerialNumber: Changing this field to 0x0 made it show up on the Windows Device Manager list.

• bmAttributes, bMaxPower: These fields differed between the Teensy and the TrueScore dongle, but
we didn’t experiment with changing them out of fear of breaking the devices. Perhaps these are used
to recognize the USB device.
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• bInterfaceClass, bInterfaceProtocol: These two fields are likely the most important for spoofing the
dongle. They illustrate that TrueScore is using a vendor-specific communication protocol different than
the TeensyDuino’s more standard CDC Data protocol [13].

Other details we modified to make the Teensy descriptor more similar to the TrueScore dongle were to
change the order of the endpoints (Bulk IN before Bulk OUT) and remove a second CDC Interrupt interface.
We were not able to change the bEndpointAddress locations for each of the endpoints and still successfully
send and receive data. We believe that this is because these locations are defined in a lower level of the
architecture, as discussed in a forum post by the creator of the Teensy [14]:

There are a few essential parts to understand about the USB module... It needs a specific memory layout.
Since it doesn’t have any dedicated user-accessible memory, it requires that the user specify where things should
be. There are specific valid locations for its Buffer Descriptor Table (more on that later) and the endpoint buffers.
(Paul Stoffregen, 2012)

We address future work in this area in Section 6.

5.5 Availability: RF Denial of Service

The TrueScore software allows the user to choose a frequency channel from 1 to 15. When we scanned
through the 2.4 GHz frequency band, we found that the frequency channels from the software end up
aligning very closely to ones for WiFi. Because of that, we know which frequencies the transmitter and
receiver operate on and we can enact a RF denial of service attack simply by flooding the frequency channel
either with a stronger signal or massive amounts of noise.

To actually jam the RF communications, we would just use a signal generator and continuously produce
random noise at that specific frequency. However, we decided against this though because jamming radio
frequencies is illegal in the United States. Additionally, since the transmitter and receiver operate on the
same frequency range as WiFi, jamming the frequency may cause problems for others in the vicinity. Another
problem with sharing the same frequency range as WiFi is that if we choose a channel that has a lot of traffic a
significant amount of the signals being transmitted are not picked up by the receiver. This is easily remedied
by choosing a channel with less traffic which can easily be found using a WiFi analyzer.

6 Future Work

6.1 Confidentiality: RF Snooping and Replay Attack

The wireless receiver uses Texas Instrument’s CC2420 chip to communicate in the 2.4 GHz unlicensed ISM
band. This chip has a frequency range of 2400 MHz to 2483.5 MHz [15]. In order to try and listen in on
the communication between the transmitter and receiver, we first need to determine what frequency the two
devices were using to communicate. To do this we use a HackRF One, which is a software defined radio, to
sweep through the frequencies from 2400 MHz to 2483.5 MHz.

We observed the frequency spectrum before and after communicating with the wireless dongle and saw
a peak around 2460 MHz that was not there before we started sending signals (Figure 10 & 11). The peaks
also happened to occur whenever we pressed a button on the judge controller. Although there was not a
peak every single time we pressed a button, we are still pretty confident that we found the correct frequency
and that the HackRF just missed the signal.

Because we now know what frequency the transmitter and receiver were communicating on, we tried a
simple replay attack by recording the signals and replaying it exactly to the receiver. Our replay attacks have
not been successful so far, so our next steps would be to actually demodulate the signal to actually get the
bits being sent. This would allow us to actually see if there some sort of mechanism like a counter preventing
us from simply replaying the message.
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Figure 10: An example of the frequency spectrum before using the TrueScore software.

Figure 11: An example of the frequency spectrum after using the TrueScore software. The main difference
is the peak at around 2460 MHz.
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Figure 12: An example of a Wireshark trace from the TrueScore dongle.

6.2 Integrity: Complete Spoofed USB Dongle

Given that the TrueScore dongle uses a vendor-specific interface and protocol, we would likely have needed
to reverse-engineer this entire protocol to succeed in mocking the device, similar to how the Microsoft Kinect
was reverse-engineered [16]. This process involves meticulously observing the messages passed between the
laptop and device in a variety of states through a program like Wireshark [17] (see Figure 12) and re-creating
them.

If we were to do this project again, we would start with hardware as similar to the target device as possi-
ble. In particular, it would have been better to use a device with an FTDI USB to Serial chip. We decided to
use Teensy/TeensyDuino because we were more familiar developing with it than TinyOS/NesC, but this put
more burden on us to accommodate the quirks of the device’s firmware and drivers.

The code for this work is available in the private repositories https://github.com/cmnord/hogu-security
and https://github.com/cmnord/teensy-cores upon request.
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6.3 Gen 1 vs Gen 2 Limitations

TrueScore has two versions of their Taekwondo scoring system. Gen 1 is the first version of the system, while
Gen 2 is the new and improved system replacing Gen 1. We had permission to work with the Gen 1 version
of TrueScore since it is less of a risk to TrueScore’s main product. Because we only worked on the Gen 1
system, some of our approaches might not carry over to the new Gen 2 system easily.

The approach that will probably still work the same on both Gen 1 and Gen 2 would be adding more
magnets to the socks. Adding more magnets will probably still help because it is a key part of how the hogus
actually detect a hit. Unless the system completely moves away from using magnets, the use of additional
magnets will probably always help.

All of the other approaches are all still plausible, but they might require a bit more effort on the Gen 2
system. For example, the communication protocol between the wireless dongle and the computer may differ
in Gen 2. This could make decoding these messages more difficult or impossible. Additionally, it might be
harder to adjust the memory of the Gen 2 software due to counter measures such as using a virtual machine
or including integrity checks. Although we did not successfully create a fully spoofed USB dongle and snoop
or attack the RF communication, these both remain possibilities in Gen 1 and Gen 2.

7 Conclusion

These days, sports are not just a form of exercise or entertainment. They are a source of national pride, and
with this comes the incentive to cheat at the highest levels of competition. For sports with electronic scoring
systems, such as Taekwondo and fencing, the integrity of these systems have to be examined to ensure an
accurate and fair competition.

The TrueScore system has several vulnerabilities that an adversary could use to manipulate the sys-
tem. In our testing, we considered potential attacks using the magnets in the e-socks (Section 5.1), the
dongle-computer datastream (Section 5.2), editing the memory used by the TrueScore software (Section
5.3), spoofing the USB dongle (Section 5.4), and the RF communication between the hogus and controllers
(Section 5.5). In Section 6, we describe some methods we are currently investigating, such as replay attacks
over RF.

Many companies prioritize new features over considering the security of existing ones, but we believe
that they should go hand in hand. As we have seen in election security research, replacing humans in a
system with hardware and software does not necessarily improve the security of the system, it just changes
what and who is being trusted. Some martial arts anthropologists have even said that ”in today’s age of
computer games, the taekwondo community [has become] infected with a blind faith in technology. The
belief in the superiority of computer-controlled systems over experienced, sound human judgment brought
an array of new, non-anticipated problems and side-effects to the sport.” [18].

From this research, we’ve concluded that the most reliable way to improve security is to carefully analyze
and improve the processes and procedures in a system.
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