
6.857 Recitation 7: MITM Attacks, Digital Signatures
Review

TA: Sean Fraser

Friday March 22nd, 2019

Agenda

• Reminder: Project proposals due tonight!

• Man-In-The-Middle Attacks (MITM)

– Diffie-Hellman (DH) Key Exchange Example

• Digital Signatures Review

– Definition

– Hash & Sign

– El-Gamal Signature Scheme

– Digital Signature Standard (DSS) / DSA

• Questions

1 Man-In-The-Middle Attacks

1

We will illustrate an example of a Man-In-The-Middle attack using the textbook Diffie-
Hellman (DH) Key Exchange. Suppose we have a communication channel between Alice (A)
and Bob (B) with an active eavesdropper (Eve, or E) as shown. In class we showed this setup
with a passive eavesdropper, and we will show why an active eavesdropper is problematic.

Recall: DH Key Exchange

• G is a finite cyclic group, with generator g.

– G = {g0, g1, ..., g|G|−1}
– G and g are fixed and public

• A and B compute K = gxy = (gx)y = (gy)x

• Relies on DDH - Decisional Diffie Hellman Assumption: (gx, gy, gxy) ≈c (gx, gy, gz)

Given gx and gy, cannot distinguish between gxy and gz with probability > 1
2

+ λ,
where u← {0, 1, ..., |G| − 1} (randomly drawn).

Note: confer with CDH, Computational Diffie Hellman assumption, in Lecture 9,
which is less strong.

Assuming DDH, Diffie Hellman is secure under a passive adversary.

Problem: Totally insecure to an active eavesdropper.

Man-in-the-Middle Attack (MITM): active eavesdropper can intercept and relay
messages in between Alice and Bob. In the DH key exchange for example, this means
the adversary can establish a different key with each of A and B separately, using the
DH key exchange, tricking Alice and Bob that Eve is the other person respectively
when she is really not. This might work as shown below, with Eve intercepting each
of gx from Alice and gy from Bob and sending ge to both. This gives Eve full power to
encrypt and decrypt messages between Alice and Bob, and change them how she likes.

Problem: Authenticity. A and B have no way of verifying the “identity” of the other.

Potential solution: Digital Signatures.

2

2 Digital Signatures

• Idea: each user has a pair of keys (PK, SK). PK is the public key, SK is the secret
key.

• Want: one person to be able to sign, and everyone to able to verify the signature (that
it came from the source it says).

=⇒ SK to sign, PK to verify.

• Recall Definition: Digital Signature Schemes

– Keygen(1λ)→ (PK, SK)

– Sign(SK,m)→ σSK(m) (may be randomized)

– V erify(PK,m, σ)→ True/False

Intuitively, a signature scheme is correct (different to secure) if for all m, we have

V erify(PK,m, Sign(SK,m)) = True

Security: against adaptive chosen message attacks (game-based definition). This is also
called existential unforgeability.

1. Challenger generates (PK, SK)← Keygen(1λ)

2. Adversary gets oracle access to sign (SK, •) i.e., adversary get signatures to sequence
of messages of his choice: m1, ...,mq such that q = poly(λ). Note that mi can depend
on the previous signatures given (“adaptive”). For notation, let σi = sign(SK,mi).

3. Adversary outputs a pair (m,σ∗)

The adversary wins if:

1. V erify(PK,m, σ∗) = 1

2. m /∈ {m1, ...,mq}

3

The signature scheme is secure if Pr[Adv Wins] ≤ negl(λ) i.e. a negligible function
of λ (For an exact definition, if you are interested, see the Katz and Lindell textbook or
the lecture notes, but this should be enough. Also note that there are notions of strong
and weak security against adaptive chosen message attacks, where technically the definition
above is weak security and strong security against adaptive chosen message attacks or strong
existential unforgeability is where the adversary is allowed to output a signature for a message
he has already seen, but the new signature has to be different. The above definition is all
that is needed for the class though, and we will not be distinguishing between the two).

• First idea: we want to use a deterministic public key encryption scheme as a signature
scheme.

Sign(SK,m) = Dec(SK,m)

V erify(PK,m, σ) = 1⇔ Enc(PK, σ) = m

Note, this is kind of opposite to how we do encryption in PK cryptography, but
we need the signing function to use the secret key.

• Problem: As shown in class e.g. with RSA (a trapdoor function - easy to compute one
way, but hard to invert)

Sign(SK,m) = md mod n

But can easily sign m2 mod n = (md)2 mod n→ insecure.

If this is confusing, refer to the lecture notes for RSA for how we set up the RSA
parameters and RSA signatures.

• Hash & Sign Paradigm

e.g. for RSA, with a hash function h:

Sign((SK, h),m) = (h(m))d mod n

V erify((PK, h),m, σ) = 1 IFF σe = h(m) mod n

Security depends on h, need collision resistance at least. (Note identity function is
collision resistant, but not secure).

Secure if h modeled as Random Oracle (ROM) (not secure if h(m)d →easy h(m2)d).

Advantages of hash & sign: enhances security, more efficient to work with smaller
fixed-length output of hash function, flexibility.

2.1 El Gamal Signatures (Review)

• Can’t use same method to convert encryption scheme to signature scheme like RSA,
since El Gamal is randomized.

• Public Parameters (PP): prime p, generator g ∈ Z∗p of prime order subgroup q, such
that q|p− 1. For example, g could be a QR 6= 1, QR ∈ Q∗p, with p = 2q + 1.

4

• KeyGen: Sample randomly x← Zq
y = gx mod p

SK = x, PK = gx = y

Security of secret key x relies on the Discrete Log Assumption (i.e. given y = gx

mod p it is computationally infeasible to find x given y and g (and p)).

• Sign(PP, SK,m): Sample randomly k ← Z∗q
Let r = gk mod p

Output (r, s) = (gk mod p, h(m)+r·x
k

mod q)

• V erify(PP, PK,m, (r, s)):

Check that 0 < r < p

Check that y
r
s · g

h(m)
s = r

• Correct since y
r
s · g

h(m)
s = g

x·r+h(m)
s = gk = r mod p

• Pointcheval-Stern (1996)

replace h(m) with h(m||r)
=⇒ now secure against adaptive chosen message attacks, assuming ROM (previ-

ously unsure)

2.2 DSS and DSA (Review)

• Digital Signature Standard (DSS) - DSA (Digital Signature Algorithm) meets this
standard set and developed by NIST.

• variant of El Gamal Signatures

• much faster / efficient due to a few key differences (works in subgroup of order q, as
opposed to mod p - order p)

about 6 times smaller signatures (6 times faster)

• Key differences: (for full specification, see Lecture Notes on Digital Signatures)

|p| = 1024 bits, |q| = 160 bits

r = (gk mod p) mod q, |r| = 160 bits, |s| = 160 bits.

All operations in 160-bit subgroup (as opposed to full Z∗p, which would have been
1024 bits)

Same provable level of security if h(m||r) is used.

• key note:

5

– importance of randomly selected k, where k ← Z∗q
– if k reused for different messages m, one could solve for x (the secret key) (to be

shown on problem set problem).

– if k different for same m, it should be random and unknown. Any relation between
the two k’s allows to solve for x.

– Therefore, it is critical that k is properly random and unique. Also q has to be
large enough to prevent brute-force attacks.

– e.g. Sony 2010: someone cracked x in the DSA algorithm that Sony was using,
since they failed to generate random k′s for each signature.

6

	Man-In-The-Middle Attacks
	Digital Signatures
	El Gamal Signatures (Review)
	DSS and DSA (Review)

