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1 DDH and QR

Recall the DDH assumption, where we assume that (gx, gy, gxy) ≈c (gx, gy, gz). In the pset,
you will show that this assumption is false for general groups.

At a high level, the attack involves testing the order of an element in the group. But,
what if all the elements in the group had the same order?

Theorem 1 (Lagrange’s Theorem). For every finite group G and every element x ∈ G, |x|
divides |G|.

If the order of G is prime, then every element x ∈ G where x 6= 1 will have order |x| = |G|.
We will construct such a group.

1.1 Quadratic Residues

Definition (Quadratic Residue). An element y ∈ G is a quadratic residue if there exists an
x ∈ G such that x2 = y (multiplication over G).

Consider a prime of the form p = 2q + 1, where q is also prime1.

1p is called a safe prime and q is called a Sophie Germain prime.
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Lemma. For all y = x2, where x ∈ G, 2|y| ≥ |x|.

Proof. Since the order of x is the smallest exponent t such that xt = 1, we know that t
cannot exceed 2s, where ys = 1, since ys = x2s = 1.

Theorem 2. For every safe prime p = 2q + 1 > 7, every quadratic residue in Z∗p that is not
1 has order q.

Proof. The order of Z∗p is p− 1 = 2q. By theorem 1, the only possible orders of elements in
Z∗p are 1, 2, q, and 2q, since these are the only numbers that divide 2q.

Consider a quadratic residue y = x2 6= 1 in Z∗p.
|y| 6= 1, since y 6= 1.
|y| 6= 2, since if it did then |x| would have to either be 3 or 4 by the lemma above (if x

had order 1 or 2 then we would have y = 1). Since p > 7, q > 3, we have that 3 6= q and 4
is not prime, so by Lagrange’s Theorem these orders are not possible.
|y| 6= 2q, since the order of y cannot be greater than q. This is because yq = x2q = xp−1 =

1, by Fermat’s little theorem.
Therefore, |y| = q.

Theorem 3. The set of quadratic residues of Z∗p for a safe prime p is a subgroup.

Proof. Call QR the set of quadratic residues in Z∗p. Let’s enumerate the properties of an
abelian group.

1. Identity. 1 ∈ QR, since (−1)2 = 1.

2. Closure. If y1 = (x1)
2 and y2 = (x2)

2, then y1 · y2 = (x1 · x2)
2, so y1 · y2 ∈ QR.

3. Associativity and Commutativity. Inherited from Z∗p.

4. Unique inverses. For all y = x2, we know there exists a unique y−1 ∈ Z∗p such that
y · y−1 = 1. All we need to show is that y−1 is a quadratic residue. Consider x−1. We
know that y · (x−1)2 = x2 · (x−1)2 = 1, so (x−1)2 = y−1 ∈ QR.

We now have a group of prime order. Finding a generator (an element g such that
|g| = |QR|) is easy, since by theorem 2 any quadratic residue that’s not 1 has order q = |QR|.
In many of the constructions in class, we’ll need to work over a group of prime order, so
these results are very useful.

2 Pedersen Commitments

For generators g and h of a prime order group, a Pedersen commitment to a value x with
randomness r is c = gxhr. To open the commitment, reveal x and r.

These commitments are perfectly hiding, since there exists an r′ for any x′ we may want
to open. This is because h = ga for some a, so c = gz = gx+ra. Solving for r, we get that
r = a−1(z − x).
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Remark. For a general multiplicative group G, the exponents can be represented as elements
in Zq, where q = |G|. Since |G| is prime in the case above, Zq is a field, so a−1 is always well
defined (for a 6= 0).

For a given commitment, there exists an r′ for every x′, so these commitments can only be
computationally binding. However, we can reduce the hardness of opening the commitments
in two different ways to the difficulty of computing discrete logs by showing how to compute
the discrete log of h = ga given two different openings for c = gxhr = gz.

Given two openings (x, r) and (x′, r′), we know that c = gxhr = gx
′
hr′ . Therefore,

z = x + ra = x′ + r′a, so solving for a gives us the following equation:

a =
x− x′

r′ − r

Opening a Pedersen commitment in two different ways is at least as hard as computing the
exponent a. If the discrete log assumption holds, then the exponent a is hard to compute,
so Pedersen commitments are computationally binding.

3 El Gamal Encryption

Let g be a generator of a group G where we believe DDH is hard. Our secret key is an
element x← {1, 2, . . . , |G| − 1}. The public key is gx.

To encrypt a message m ∈ G, sample a random y ← {1, 2, . . . , |G|− 1} and compute gxy.
Output c = (gy,m · gxy).
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