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1 Groups

We’ll begin by informally defining a group. A group is a generalization of an invertible asso-
ciative binary operator, like “addition of reals”, “matrix multiplication”, or “multiplication
mod p”. A binary operator works on some particular elements (like “the reals”, “invertible
matrices”, or “residues modulo p”, for our examples above), so the set of elements it works
on is an important part of the group.

Formally, we’ll define a group (G, •) to be a set of elements G, together with some binary
operator •. (Think of • as a placeholder for whatever operator you’re using.) The binary
operator has a few requirements: (as you’re reading these requirements, try checking them
on the examples above)

• closed: for any two g, h ∈ G, g • h is also an element of G

• associative: (g • h) • k = g • (h • k),

• has identity: there must be an element e such that e • g = g and g • e = g.

• has inverses: for any g ∈ G, there’s some element h such that h • g = g • h = e.

Because we’re used to notation for addition and multiplication, we’ll often ”cheat” and
write groups using + or · as the operator. We’ll actually sometimes go a step further and
use “0” or “1” to denote the identity element (like in addition and multiplication), and we’ll
use −g or g−1 to denote the inverse (like subtraction or division). Remember, these are just
little cheats that help us because groups behave almost just like addition or multiplication
to work.
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2 Finite Groups and Generators

For a finite group, the number of elements of a group G is called the order of the group; we
write it |G| or ord(G).

One useful way of analyzing a particular element of a group is by considering it’s suc-
cessive powers (both forwards and ”backwards” by taking the inverse): in multiplicative
notation, these would be

{. . . , g−2, g−1, g0 = 1, g1 = g, g2, g3, . . .} .

We’ll call this set “the subgroup generated by g”, and we’ll sometimes write it as 〈g〉. The
term “subgroup” means that it’s a subset of the original group that’s still a group with the
same operation (you can check the requirements pretty easily).

In a finite group, there are only finitely many elements, so the subgroup 〈g〉 must also
have finite size. That means that eventually, gk = 1 again, and the group “cycles around”.
We call the size of 〈g〉 the order of g or ord(g). We can note that 〈g〉 = {1, g, . . . , gord(g)−1}
and gord(g) = 1; otherwise, the subgroup group would be bigger or smaller.

Groups that look like {1, g, . . . , gk−1} are called cyclic groups, because they’re just a single
cycle, and work as if we’re adding the exponents modulo k. Note that 〈g〉 for any element
is always cyclic.

An important theorem is that the order of an element g always divides the order of the
group. (This is called Lagrange’s Theorem.) This means that, if a group has prime order
p, then the order of each element is either 1 or p; only the identity has order 1, so all other
elements have order p, so 〈g〉 must equal to G for g 6= 1. Thus, any group of prime order is
actually cyclic, and any non-identity element is a generator.

3 Z∗p and Q∗p

A useful group we’ll use is Z∗
p, the group of non-zero residues modulo p with multiplication.

This has order p− 1, because we exclude 0.

It’s a little tricky to show, but it turns out Z∗
p is actually a cyclic group of order p − 1!

This means that Z∗
p = {1, g, . . . , gp−2} for some g. Furthermore, this means that g2 has

order (p− 1)/2, as it generates the group 〈g2〉 = {1, g2, g4, . . . , g(p−3)} (every “even” element
of 〈g〉). We call this group Q∗

p, which is the group of quadratic residues (perfect squares)
modulo p.

If p = 2q + 1 is a safe prime, then Q∗
p has order q, which is prime, so it’s cyclic. This is
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the basis for a lot of cryptography.
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