6.857 Recitation 2: Hashing

TA: Leo de Castro
Friday February 15, 2019

Today

e Review adversary definition
e Hashing

— One-wayness

— Collision resistance

Birthday Paradox / Attack

— Computing collisions (Floyd’s 2-finger algorithm)

1 Adversaries

Let’s begin by reviewing one of the most important definitions in cryptography: the ad-
versary. A security policy cannot be complete without a definition of adversaries being
considered and the adversarial behavior against which the system defends.

Definition 1 (Kerckhoffs’s principle). A cryptosystem should be secure even if everything
about the system, except the secret key, is public knowledge.

This gives the adversary a lot of room for malicious behavior. Some adversarial behaviors
that we consider are:

e Eavesdropping on messages

e Changing/mauling messages

Storing messages

Corrupting parties

e Impersonating parties



Here are some examples of ways an adversary may attack a voting system and the de-
fenses the designer of the system has put in place to address these attacks.

Behavior Defense
Bribing voters No receipt for the vote
Bribing election officials Public verifiability
Impersonating voters Voter identification

In general, we want our systems to be secure against advanced persistent threats (APTs).

Definition 2. Advanced Persistent Threat An advanced persistent threat (APT) is an ad-
versary that is

e Highly resourceful
e Has access to sophisticated methods and technology
e Substantially funded for ongoing efforts

If you can argue that your system is secure against advanced persistent threats, you're
likely on the right track with your security policy!

2 Hash Functions

In lecture, we defined a primitive called a hash function and described some desirable prop-
erties of this function.

Definition 3. Hash Function A hash function
h:{0,1}* — {0,1}¢
is an efficiently computable function that takes in a binary string of arbitrary length and
maps it to a binary string of length d.
Review of some desirable hash function properties

Definition 4. One-wayness. Given a random y € {0,1}¢, it is computationally infeasible to
find an z such that h(z) = y. [Note: brute force takes O(2%) in ROM.]

Definition 5. Collision resistance. It is computationally infeasible to find any pair x, 2’
such that = # 2/ and h(z) = h(2').

Definition 6. Targeted collision resistance. Given a target x;, it is infeasible to find any
x # xy such that h(z) = h(xy).



2.1 Birthday Paradox
Given h: {0,1}* — {0,1}¢, how long does it take to find a collision?

Theorem 7. Birthday Paradox Given a random function g: {0,1}* — {0,1}¢, the time it
takes to find a collision is O(2%/?).

Proof. Suppose we have a set of n binary strings. What is the probability that the set
contains a collision?

.. n _
E[# of collisions| = B Z 4Pr[h(xi) = h(z;)] = (2) .97
_ n(n — 1)2—d ~ 2941
2

This is greater than 1 when n > 24+1/2 & 24/2 O

The consequence of this theorem is that hash function outputs must be twice as long as
the number of bits of security you actually require (i.e. 60 bits of security requires a 120-bit
output).

2.2 Computing Collisions

The brute-force method described above takes O(2%2) time and O(2%2) space. We will now
give an algorithm for finding collisions that takes O(2%/2) time and only O(1) space.

Algorithm 1: Floyd’s Two-Finger Cycle Detection Algorithm

Pick a random value x.;
a < h(z) and b < h(h(x));
while a # b: do
a < h(a);
b h(h(b));
end
a < h(z);
Pa 5
Py < b;
while a # b do
Pa G
Py < b;
a < h(a);
b < h(b);
end
return p,, py




Suppose x leads to a cycle of length n, and x started ¢ nodes away from this cycle. If
after 7 iterations we have entered the cycle, then we will have a = Z(;_y) moan and b =
T(2i—t) mod n- When we reach an iteration j such that j > ¢ and j =0 mod n, then we will
have a = b=2_s mod n-

How can we use this to find a cycle?

We will start by setting a to the original = value, which is ¢ steps away from the start
of the cycle. Since b = x_; 04 n, then if we take t steps from both these positions, we will
arrive at the same node. If we remember the pre-images for these steps, then we can return
these pre-images as the collision.

Below is an example run of this algorithm.

In the graph above, we have ¢t = 2 and n = 8. We start at a value z and set ap = h(z) and
bo = h(h(z)). We set a; and b; to be the i values taken by a and b. The first 7 values taken
are for the first while loop. At ag = bg, we know a collision is found. Note that 6 = —2
mod n. Once we found this collision, we move a back to h(z) and begin stepping through one
hash at a time until the collision is found, which is where the tail meets the start of the cy-
cle. By remembering the preimages in this phase, we are able to return the colliding elements.

It is clear that the number of hashes is O(n + t). But what are the expected sizes of n
and t? Consider a traversal of the graph, starting at a random node. As we hash from one
value to the next, we are moving from one node to the next. If we ever see a node more
than once, then we have a cycle. Note that this is exactly the same as the birthday paradox
above. This means that we expect n + ¢ to be O(2%2). Thus, the running time of Floyd’s
algorithm is O(24/2).



