6.857 RO1: Review of Modular Arithmetic

Andrew He

February 8, 2019

1 Introduction

We're going to cover modular arithmetic and a few useful theorems. We’ll also take note of
how to implement these operations.

2 Modular Arithmetic

We'll start with some motivation.

Example 1 (Last digits). Q: What is the last digit of 298753 + 983987 How about 287124 -
176437

A: The last digit of the sum/product only depends on the last digits of the operands;
thus, they are 3 + 8 = 1 and 4-3 = 1.

Note that the last digit is just the number modulo 10. This generalizes to become modular
arithmetic. We'll say “a is congruent to b modulo m” and write a = b (mod m) if and only
if:

e a%m = b%m, or equivalently,

e m|(b—a)

I'm using % like in code. The second form is the most useful for proving things, but
somewhat cumbersome to use otherwise.

We can check that addition, subtraction, and multiplication “work properly” modulo m
(e.g. you get consistent results whether adding 2 or 12 modulo 10).

Remark. For a more formal definition, we observe that modular congruence is an equiva-
lence relationship on the integers, so we define addition/subtraction/multiplication on the
equivalence classes. For those who know more math, we’re defining an addition group and
a multiplication group. For those who know even more math, we’re just taking a quotient
group of the integers.

For the rest of this lecture, we’ll mostly work with prime modulo; they have some par-
ticularly nice properties, and we’ll show how to generalize them near the end.

2.1 Implementation

Modular addition and subtraction modulo m can be in O(logm) time, just like normal
addition and subtraction, just using grade-school formulas, as there are O(logm) digits.

Likewise, multiplication takes O((logm)?) time, using grade-school multiplication, or
O(log mloglogm) with FFT-based techniques.

Either way these techniques are all fast; that means we can write algorithms using these
operations.

3 Modular Division

We've seen modular addition and subtraction (which are inverses), and modular multiplica-
tion. What about division? Division is very useful; it allows us solve linear equations and
reverse multiplication, which gives a ton of power.

Claim 2. Division is pretty much equivalent to the existence of multiplicative inverses; if
a~! is the multiplicative inverse of @ so that a-a~! =1, then b/a =b-a™ .

Theorem 3. Given any prime modulo p and residue a % 0 (mod p), there exists a unique
value b (mod p) such that ab = ba =1 (mod p). We'll define and write a™! = b.

One proof of this theorem is by considering the arithmetic sequence
0,a,2a,3a,...,(p—1)a.

This sequence must have all distinct residues: otherwise, if ia = ja, then p | (ia — ja) =
(1 — j)a, which isn’t possible, as pfi — j and a Z 0 (mod p). The sequence has p distinct
residues, so one of them must be 1, so there’s some k such that ak =1 (mod p).

2

This means that modulo p, we can divide by any non-zero element! Division works in all
the ways that normal division does. Even “fractions” work like we’d expect.

Example 4. Let’s work in modulo 7. Note that over rationals, 1/2+1/3 = 1/6. How about
over modulo 77 Well, 27! =4, 37! = 5, and 67! = 6, and indeed, 4 + 5 = 6. Statements
like these still work out because we can multiply both sides by 6 and clear denominators, as
we’d expect.

3.1 Implementation

We've shown that there exist modular inverses, but we haven’t shown a way to find them.
The standard technique is the extended Euclidean algorithm, which you can find by Googling.
In SAGE (a Python-like compute algebra system), you can just call inverse mod(a, m).
This is also fast: it runs in O((logm)?) or O(logm) multiplications, which is also polynomial
time.

4 Modular Exponentiation

Modular exponentiation is where we start to get real cryptographic power.

Unlike multiplication, we don’t define exponentiation in some special way modulo m.
Exponentiation is simply repeated multiplication: ¢> = ¢g-¢-¢ (mod m). This means that
any standard identities like g®™ = g%g® and g = (g%)® work. Note that the exponents are
not taken modulo m, unlike g.

The most useful structure comes from iterated multiplication or the exponents of a num-

ber.

Example 5. Consider powers of 2 modulo 7. We have:

o 20=1.
o 2l =2
o 22=14
e 22=1
o 24 =2
e 2°=14

e 26 =1.

Note that, after we hit 23 = 1, we continue to cycle through the same values, because 1
is the multiplicative identity. Also, the multiplicative inverse of 2 exists, so this sequence is
always “reversible”: given 2%, we know 2%~! uniquely. Thus, we can see that this sequence is
actually cyclic going forwards and backwards, and each cycle contains only unique elements.
There are only p — 1 different residues, so it has to cycle within p — 1 elements.

This turns out to be very useful. We’ll call the cycle length the order of 2 modulo 7, and
sometimes will write it as ord;(2) = 3.

Theorem 6 (Fermat’s Little Theorem). Given a prime modulo p, and a residue a #Z 0
(mod p),
a?'=1 (mod p) .

Equivalently, ord,(a) | (p — 1) for all a.

The biggest takeaway from this theorem is that we can essentially take exponents modulo
p—1,as a*P" D+ = (aP~)*q" = a" (mod p).

4.1 Generators and Primitive Roots

Fermat’s Little Theorem gives an upper bound on the order, but it would be great if we
could find a value with actually high order. It turns out we can!

Theorem 7. For any prime modulo p, there exists an element g such that ord,(g) =p — 1.

That means, if we look at 1, ¢, g%, ... g7 2, these p — 1 elements are necessarily distinct,
so they cover all of the non-zero residues modulo p. That means we’'ve defined a nice cyclic
structure over 1,...,p — 1!

This also means that we can find an element of order d for any d | p—1: just take g®»=1/9,
This is sometimes useful; we often pick primes p = 2¢q + 1 where ¢ is prime, and then find
an element of order ¢ because prime cycle-length is nice and has less room for vulnerability.

4.2 Implementation

This is where the cool crypto comes from: modular exponentiation is fast. We can take a?*
by recursively computing (a*)? and a®**! = a - (a¥)?, so taking the kth power takes only
log(k) multiplications.

However, taking the inverse operation - a "discrete logarithm”, seems to be very hard.
Given a generator ¢ and a value v, finding k so that ¢* = v seems to require essentially brute
forcing k in O(k) time. Cryptography relies heavily on this. Yay!

5 Non-prime Modular Arithmetic

Finally, we’ll quickly cover some non-prime modular arithmetic. The key theorem here is
the Chinese Remainder Theorem.

Theorem 8 (Chinese Remainder Theorem (CRT)). For any two relatively prime modulo m
and n, and constants a and b, given that

r=a (mod m)

r=">0 (mod n)

there is a unique residue v such that
r=v (mod mn)
In other words, if we know x mod m and x mod n, we can uniquely determine x mod

mn. Thus, we can think of mod mn as just a combination of the information of mod m and
mod n.

Theorem 9 (Euler’s Theorem for Semiprimes). Given two primes p and q,

2P~V =1 (mod pq)

Proof. Note that 2P~D@=1 = (zP=1)9=1 = 1 (mod p), and likewise modulo q. By the CRT,
this uniquely determines the value modulo pq, so it must be 1, as desired. O

This is useful for RSA.

5.1 Implementation

We can find the value from CRT in O(log(m)) multiplications using the extended Euclidean
algorithm. In SAGE, this is the method crt.

