6.857 R01: Review of Modular Arithmetic

Andrew He

February 8, 2019

1 Introduction

We're going to cover modular arithmetic and a few useful theorems. We'll also take note of how to implement these operations.

2 Modular Arithmetic

We'll start with some motivation.

Example 1 (Last digits). **Q:** What is the last digit of 298753 + 98398? How about $287124 \cdot 17643$?

A: The last digit of the sum/product only depends on the last digits of the operands; thus, they are $3 + 8 = 1 \boxed{1}$ and $4 \cdot 3 = 1 \boxed{2}$.

Note that the last digit is just the number modulo 10. This generalizes to become modular arithmetic. We'll say "a is congruent to b modulo m" and write $a \equiv b \pmod{m}$ if and only if:

- a%m = b%m, or equivalently,
- $m \mid (b-a)$

. I'm using % like in code. The second form is the most useful for proving things, but somewhat cumbersome to use otherwise.

We can check that addition, subtraction, and multiplication "work properly" modulo m (e.g. you get consistent results whether adding 2 or 12 modulo 10).

Remark. For a more formal definition, we observe that modular congruence is an equivalence relationship on the integers, so we define addition/subtraction/multiplication on the equivalence classes. For those who know more math, we're defining an addition group and a multiplication group. For those who know even more math, we're just taking a quotient group of the integers.

For the rest of this lecture, we'll mostly work with prime modulo; they have some particularly nice properties, and we'll show how to generalize them near the end.

2.1 Implementation

Modular addition and subtraction modulo m can be in $O(\log m)$ time, just like normal addition and subtraction, just using grade-school formulas, as there are $O(\log m)$ digits.

Likewise, multiplication takes $O((\log m)^2)$ time, using grade-school multiplication, or $O(\log m \log \log m)$ with FFT-based techniques.

Either way these techniques are all fast; that means we can write algorithms using these operations.

3 Modular Division

We've seen modular addition and subtraction (which are inverses), and modular multiplication. What about division? Division is very useful; it allows us solve linear equations and reverse multiplication, which gives a ton of power.

Claim 2. Division is pretty much equivalent to the existence of multiplicative inverses; if a^{-1} is the multiplicative inverse of a so that $a \cdot a^{-1} = 1$, then $b/a = b \cdot a^{-1}$.

Theorem 3. Given any prime modulo p and residue $a \neq 0 \pmod{p}$, there exists a unique value $b \pmod{p}$ such that $ab \equiv ba \equiv 1 \pmod{p}$. We'll define and write $a^{-1} = b$.

One proof of this theorem is by considering the arithmetic sequence

$$0, a, 2a, 3a, \ldots, (p-1)a$$
.

This sequence must have all distinct residues: otherwise, if $ia \equiv ja$, then $p \mid (ia - ja) = (i - j)a$, which isn't possible, as $p \nmid i - j$ and $a \not\equiv 0 \pmod{p}$. The sequence has p distinct residues, so one of them must be 1, so there's some k such that $ak \equiv 1 \pmod{p}$.

This means that modulo p, we can divide by any non-zero element! Division works in all the ways that normal division does. Even "fractions" work like we'd expect.

Example 4. Let's work in modulo 7. Note that over rationals, 1/2 + 1/3 = 1/6. How about over modulo 7? Well, $2^{-1} = 4$, $3^{-1} = 5$, and $6^{-1} = 6$, and indeed, $4 + 5 \equiv 6$. Statements like these still work out because we can multiply both sides by 6 and clear denominators, as we'd expect.

3.1 Implementation

We've shown that there exist modular inverses, but we haven't shown a way to find them. The standard technique is the extended Euclidean algorithm, which you can find by Googling. In SAGE (a Python-like compute algebra system), you can just call inverse_mod(a, m). This is also fast: it runs in $O((\log m)^2)$ or $O(\log m)$ multiplications, which is also polynomial time.

4 Modular Exponentiation

Modular exponentiation is where we start to get real cryptographic power.

Unlike multiplication, we don't define exponentiation in some special way modulo m. Exponentiation is simply repeated multiplication: $g^3 \equiv g \cdot g \cdot g \pmod{m}$. This means that any standard identities like $g^{a+b} = g^a g^b$ and $g^{ab} = (g^a)^b$ work. Note that the exponents are *not* taken modulo m, unlike g.

The most useful structure comes from iterated multiplication or the exponents of a number.

Example 5. Consider powers of 2 modulo 7. We have:

- $2^0 \equiv 1$.
- $2^1 \equiv 2$.
- $2^2 \equiv 4$.
- $2^3 \equiv 1$.
- $2^4 \equiv 2$.
- $2^5 \equiv 4$.

• $2^6 \equiv 1$.

Note that, after we hit $2^3 \equiv 1$, we continue to cycle through the same values, because 1 is the multiplicative identity. Also, the multiplicative inverse of 2 exists, so this sequence is always "reversible": given 2^a , we know 2^{a-1} uniquely. Thus, we can see that this sequence is actually cyclic going forwards and backwards, and each cycle contains only unique elements. There are only p-1 different residues, so it has to cycle within p-1 elements.

This turns out to be very useful. We'll call the cycle length the *order* of 2 modulo 7, and sometimes will write it as $\operatorname{ord}_7(2) = 3$.

Theorem 6 (Fermat's Little Theorem). Given a prime modulo p, and a residue $a \neq 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Equivalently, $\operatorname{ord}_p(a) \mid (p-1)$ for all a.

The biggest takeaway from this theorem is that we can essentially take exponents modulo p-1, as $a^{k(p-1)+r} \equiv (a^{p-1})^k a^r \equiv a^r \pmod{p}$.

4.1 Generators and Primitive Roots

Fermat's Little Theorem gives an upper bound on the order, but it would be great if we could find a value with actually high order. It turns out we can!

Theorem 7. For any prime modulo p, there exists an element g such that $\operatorname{ord}_p(g) = p - 1$.

That means, if we look at $1, g, g^2, \ldots g^{p-2}$, these p-1 elements are necessarily distinct, so they cover all of the non-zero residues modulo p. That means we've defined a nice cyclic structure over $1, \ldots, p-1$!

This also means that we can find an element of order d for any $d \mid p-1$: just take $g^{(p-1)/d}$. This is sometimes useful; we often pick primes p = 2q + 1 where q is prime, and then find an element of order q because prime cycle-length is nice and has less room for vulnerability.

4.2 Implementation

This is where the cool crypto comes from: modular exponentiation is fast. We can take a^{2k} by recursively computing $(a^k)^2$ and $a^{2k+1} = a \cdot (a^k)^2$, so taking the *k*th power takes only $\log(k)$ multiplications.

However, taking the inverse operation - a "discrete logarithm", seems to be very hard. Given a generator g and a value v, finding k so that $g^k \equiv v$ seems to require essentially brute forcing k in O(k) time. Cryptography relies heavily on this. Yay!

5 Non-prime Modular Arithmetic

Finally, we'll quickly cover some non-prime modular arithmetic. The key theorem here is the Chinese Remainder Theorem.

Theorem 8 (Chinese Remainder Theorem (CRT)). For any two relatively prime modulo m and n, and constants a and b, given that

$$x = a \pmod{m}$$
$$x = b \pmod{n}$$

there is a unique residue v such that

 $x = v \pmod{mn}$

In other words, if we know $x \mod m$ and $x \mod n$, we can uniquely determine $x \mod mn$. Thus, we can think of mod mn as just a combination of the information of mod m and mod n.

Theorem 9 (Euler's Theorem for Semiprimes). Given two primes p and q,

 $x^{(p-1)(q-1)} \equiv 1 \pmod{pq}$

Proof. Note that $x^{(p-1)(q-1)} \equiv (x^{p-1})^{q-1} \equiv 1 \pmod{p}$, and likewise modulo q. By the CRT, this uniquely determines the value modulo pq, so it must be 1, as desired.

This is useful for RSA.

5.1 Implementation

We can find the value from CRT in $O(\log(m))$ multiplications using the extended Euclidean algorithm. In SAGE, this is the method crt.