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Textbook RSA Encryption
[Rivest Shamir Adleman 1977]

Public Key

N = pq modulus
e encryption exponent

Private Key

p, q primes
d decryption exponent

(d = e−1 mod (p − 1)(q − 1))

public key = (N, e)

ciphertext = messagee mod N

message = ciphertextd mod N



RSA cryptanalysis: computational problems

Factoring
Problem: Given N, compute its prime factors.
I Computationally equivalent to computing private key d .
I Factoring is in NP and coNP → not NP-complete (unless

P=NP or similar).

eth roots mod N
Problem: Given N, e, and c , compute x such that xe ≡ c mod N.
I Equivalent to decrypting an RSA-encrypted ciphertext.
I Not known whether it is equivalent to factoring.



Factoring the hard way.



Factoring with the number field sieve
[Pollard], [Pomerance], [Lenstra,Lenstra]

N

polynomial
selection

sieving linear
algebra

square
root

p

Algorithm
Motivation: Find a, b with a2 ≡ b2 mod N and gcd(a+ b,N) or
gcd(a− b,N) nontrivial.
1. Polynomial selection Find a good choice of number field K .
2. Relation finding Factor elements over OK and over Z.
3. Linear algebra Find a square in OK and a square in Z.
4. Square roots Take square roots, map into Z, and hope we

find a factor.



How long does it take to factor integers?
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Answer 1: Asymptotic complexity.

L(1/3, 1.923) = exp(1.923(logN)1/3(log logN)2/3)

Answer 2: Concrete records.
I In 1999, 512-bit RSA in 7 months and hundreds of computers.

[Cavallar et al.]

I In 2009, 768-bit RSA in 2.5 calendar years. [Kleinjung et al.]
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Answer 3: Extrapolation to larger key sizes.
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Sieving Linear Algebra

I lpb core-years rows core-years

RSA-512 14 29 0.5 4.3M 0.33

RSA-768 16 37 800 250M 100

RSA-1024 18 42 1,000,000 8.7B 120,000



Answer 4: Do it yourself.
[VCLFBH 2016]

Time to factor 512-bit RSA on Amazon EC2 in 2016:
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Practical uses for 512-bit factorization

I 2009: Benjamin Moody factors 512-bit TI calculator code
signing key.

I 2012: Zach Harris factors Google’s 512-bit DKIM key.
I 2015: FREAK attack [BBDFKPSZ 2015]

Modern TLS connections can be downgraded to 512-bit
export-grade RSA. 10% of popular HTTPS sites vulnerable.

I 2016: Many 512-bit DNSsec and DKIM keys still in the wild.
I 2016–2018: TeslaCrypt, Chainshot Ransomware use 512-bit

RSA keys.



Factoring the easy way.



RSA and GCDs

If two RSA moduli share a common factor,

N1 = pq1 N2 = pq2

gcd(N1,N2) = p

You can factor both keys with GCD algorithm.

Time to factor
768-bit RSA modulus:
2.5 calendar years
[Kleinjung et al. 2010]

Time to calculate GCD
for 1024-bit RSA moduli:
15µs
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Should we expect to find prime collisions in the wild?

Experiment: Compute GCD of each pair of M RSA moduli
randomly chosen from P primes.

What should happen? Nothing.

Prime Number Theorem:
∼ 10150 512-bit primes

Birthday bound:
Pr[nontrivial gcd] ≈ 1− e−2M2/P
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What happened when we GCDed RSA keys in 2012?

Computed private keys for

I 64,081 HTTPS servers (0.50%).

I 2,459 SSH servers (0.03%).

I 2 PGP users (and a few hundred invalid keys).
[Lenstra et al. 2012]

What has happened since?
I 103 Taiwanese citizen smart card keys [Bernstein, Chang, Cheng,

Chou, Heninger, Lange, van Someren 2013]

I 90 export-grade HTTPS keys.
[Albrecht, Papini, Paterson, Villanueva-Polanco 2015]

I 313,330 HTTPS, SSH, IMAPS, POP3S, SMTPS keys
[Hastings Fried Heninger 2016]

I 3,337 Tor relay RSA keys.
[Kadianakis, Roberts, Roberts, Winter 2017]
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Algorithmic note: How to efficiently compute pairwise GCDs

Computing pairwise gcd(Ni ,Nj) the naive way on all of the unique
RSA keys in a single set of Internet-wide scans would take

15µs×
(
14× 106

2

)
pairs ≈ 1100 years

of computation time.
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Algorithmic note: How to efficiently compute pairwise GCDs
Algorithm from (Bernstein 2004)

N1N2N3N4

×

N4N3

×

N2N1

N1N2N3N4

mod N2
1 N2

2

mod N2
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·
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·gcd( ,N1) gcd( ,N2)gcd( ,N3) gcd( ,N4)

product
tree
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tree

A few hours for 80M keys.
Implementation available at https://factorable.net.



Widespread RNG failures on low resource devices

We accidentally found multiple independent implementation
problems.

Clue #1: Vast majority of weak keys generated by low resource
devices.

I Juniper network security devices
I Cisco routers
I Fortigate firewalls
I Intel server management cards
I . . .

Identified devices from > 50 manufacturers

Clue #2: Very different behavior for different devices. Different
companies, implementations, underlying software, distributions of
prime factors.



One cause: Cascading PRNG failures
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crypto keys on first boot.

I The Linux PRNG had not yet been
seeded when queried by OpenSSL
=⇒ deterministic output.
Patched since 2012.

I Headless or embedded devices often
lack these entropy sources.
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How did factorable keys arise in practice?

I Usability problems in random number generator interface.

/* We’ll use /dev/urandom by default, since /dev/random is
too much hassle. If system developers aren’t keeping seeds
between boots nor getting any entropy from somewhere it’s
their own fault. */

#define DROPBEAR_RANDOM_DEV "/dev/urandom"

I A cascade of vulnerable software behaviors.

I OpenSSL mixed current time in seconds into RNG state
I This led to factorable and not merely repeated keys.



Generating vulnerable RSA keys in software

I Insufficiently random seeds for pseudorandom number
generator =⇒ we should see repeated keys.

prng.seed()
p = prng.random_prime()
q = prng.random_prime()
N = p*q

I We do:
I > 60% of hosts share keys
I At least 0.3% due to bad randomness.

I Repeated keys may be a sign that implementation is vulnerable
to a targeted attack.

But why do we see factorable keys?



Generating factorable RSA keys in software

prng.seed()
p = prng.random_prime()
prng.add_randomness()
q = prng.random_prime()
N = p*q

OpenSSL adds time in seconds

Insufficient randomness can lead to factorable keys.

8F 2B C1 13 EA F1 AA

8F 2B C1 13 EA 92 41

device 1

device 2

time=0 time=1

← generating p → ← generating q →

Experimentally verified OpenSSL generates factorable keys in this
situation.



Follow-up study: Six years of factoring keys
I 51 million distinct HTTPS RSA moduli : 0.43% vulnerable
I 65 million distinct HTTPS certificates : 2.2% vulnerable
I 1.5 billion HTTPS host records : 0.19% vulnerable
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Textbook (Finite-Field) Diffie-Hellman Key Exchange
[Diffie Hellman 1976]

p a prime (so F∗
p is a cyclic group)

g < p multiplicative group generator (often 2 or 5)

ga mod p

gb mod p

gab mod pgab mod p



Diffie-Hellman cryptanalysis and computational problems

Discrete Log
Problem: Given ga, compute a.
I Solving this problem permits attacker to compute shared key

by computing a and raising (gb)a.
I Discrete log is in NP and coNP → not NP-complete (unless

P=NP or similar).

Diffie-Hellman problem
Problem: Given ga, gb, compute gab.
I Exactly problem of computing shared key from public

information.
I Reduces to discrete log in some cases:
I (Computational) Diffie-Hellman assumption: This problem is

hard in general.



Computing discrete logs the easy way.



Reminder: groups, subgroups, and generators
Cyclic group

Order = #elements in group

generator
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Elementary discrete log cryptanalysis

Theorem (Lagrange)
ord(g)p divides p − 1.

Theorem (Pollard rho, Shanks baby step giant step)
Discrete log takes O(

√
q) time in (sub)group of order q.

Pohlig-Hellman Algorithm

1. Factor group order q =
∏

i q
ei
i .

2. Solve discrete log in each subgroup in time ei
√
qi .

3. Use Chinese remainder theorem to reconstruct log modq.

A randomly chosen prime will have many small factors for p − 1



Composite group orders: A sad tale
[ABDGGHHSTVVWZZ 2015] following [van Oorschot Wiener 1996]

1. 3.4M HTTPS servers supported Diffie-Hellman in 2015

2. 70,000 distinct primes p

3. 4,800 primes where (p − 1)/2 is not prime.

4. For 750 groups, learned prime factors of ordp(g)
(by opportunustically factoring (p − 1)/2 with ECM).
I Used in 40,000 connections across scans.



Surprising implementation choices

Modular exponentiation is expensive, so many implementations use
short exponents:
I 128 or 160 bits with 1024-bit p.

p = random_prime(2**1024)
g = 2

a = random_integer(2**160)
y = modexp(g,a,p)

5. Computed secret exponent for 159 exchanges and partial
information in 460 exchanges.



Countermeasures against elementary discrete log attacks

The countermeasures are well known, and built into every DH
standard:

I g should generate a group of large prime order q
modulo p

I To maximize q, set p = 2q + 1 “safe” prime



In practice, the DDH assumption is false.
(Decisional Diffie-Hellman)

Of 70,000 Diffie-Hellman groups in use for HTTPS in 2015:

p “safe”

p non-“safe”

ordp(g) composite ordp(g) prime

64,000 1250

4,000750

Question: Is this a real vulnerability? Probably not.



Small subgroups often used in Diffie-Hellman
Until 2018, NIST recommended small subgroups; now allows safe
primes or small subgroups.

NIST SP800-56a: Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm
Cryptography



Existence of small subgroups → small subgroup attacks.

g generates correct subgroup of order q
g3 generates subgroup of order 3

[Lim Lee 1997]
g3

gb, Encgb
3
(data)

compute b mod 3



Well-known countermeasure: Validate group order.

1. Verify 2 ≤ y ≤ p − 2.
2. Verify 1 = yq mod p.

I I can’t. Many protocols have no
way to specify q.

I I don’t want to. It is unnecessary.
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Implementations don’t validate group order.
[VASCFHHH 2017]

Hosts accepting. . .

Hosts DHE Non-Safe
Primes 0 1 -1 g3/g7

HTTPS 40M 30% 14% 0.6% 3% 5% ≈ 100%
IKEv1 2.6M 100% 13% * 28% 27% 99%
IKEv2 1.3M 100% 14% * 0% 0% 97%
SSH 15M 71% ≈ 0% 3% 25% 33% N/A

I OpenSSL vulnerable to full Lim-Lee exponent recovery attack
for RFC 5114 primes.

I Amazon Load Balancer partial exponent recovery attack.

*: Did not scan: 0 causes unpatched Libre/Openswan to restart IKE daemon.



Computing discrete logs the hard way.



Number field sieve discrete log algorithm
[Gordon], [Joux, Lercier], [Semaev]

p

polynomial
selection

sieving linear
algebra

log db

y , g descent

a

1. Polynomial selection: Find a good choice of number field K .

2. Relation collection: Factor elements over OK and over Z.

3. Linear algebra: Once there are enough relations, solve for logs of
small elements.

4. Individual log: “Descent” Try to write target t as sum of logs in
known database.



How long does it take to compute discrete logs?

p

polynomial
selection

sieving linear
algebra

log db

y , g descent

a

Answer 1: Asymptotic complexity.

Lp(1/3, 1.923) = exp(1.923(log p)1/3(log log p)2/3)

Answer 2: Computational records.

Year Discrete Log Factoring

1999 512 bits [Cavallar et al]
2005 431 bits [Joux, Lercier]
2007 530 bits [Kleinjung]
2009 768 bits [Kleinjung et al.]
2014 596 bits [Bouvier et al.]
2016 768 bits [Kleinjung et al.]
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“Perfect Forward Secrecy”

“Sites that use perfect forward secrecy can provide better security
to users in cases where the encrypted data is being monitored and
recorded by a third party.”

“With Perfect Forward Secrecy, anyone possessing the private key
and a wiretap of Internet activity can decrypt nothing.”

“Ideally the DH group would match or exceed the RSA key size but
1024-bit DHE is arguably better than straight 2048-bit RSA
so you can get away with that if you want to.”

“But in practical terms the risk of private key theft, for a
non-ephemeral key, dwarfs out any cryptanalytic risk for any RSA
or DH of 1024 bits or more; in that sense, PFS is a must-have and
DHE with a 1024-bit DH key is much safer than RSA-based
cipher suites, regardless of the RSA key size.”



How long does it take to compute discrete logs?
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individual log

Answer 1.5:

Lp(1/3, 1.923) = exp(1.923(log p)1/3(log log p)2/3) Lp(1/3, 1.232)

Precomputation can be done once and reused for many individual logs!



How long does it take to compute discrete logs?

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y , g descent

a

individual log

Answer 3: Extrapolation.

Precomputation Individual Log
core-years core-time

RSA-512 1 —
DH-512 10 10mins

RSA-768 1,000 —
DH-768 5,000 4 days

RSA-1024 1,000,000 —
DH-1024 ≈10,000,000 30 days



Implications for Diffie-Hellman security in practice

I 2015: Logjam attack [ABDGGHHSTVVW 2015]
Modern TLS connections can be downgraded to 512-bit
export-grade DH. 8% of popular HTTPS sites vulnerable.

I Mass surveillance:
Governments can exploit 1024-bit discrete log for wide-scale
passive decryption.
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Is breaking 1024-bit DH within reach of governments?
[ABDGGHHSTVVWZZ 2015]
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≈$100Ms.

I Then, individual logs can be computed in close to real time
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James Bamford, 2012, Wired

According to another top official also involved with the program,
the NSA made an enormous breakthrough several years ago in its
ability to cryptanalyze, or break, unfathomably complex encryption
systems employed by not only governments around the world but
also many average computer users in the US. The upshot,
according to this official: “Everybody’s a target; everybody with
communication is a target.”

[...]

The breakthrough was enormous, says the former official, and soon
afterward the agency pulled the shade down tight on the project,
even within the intelligence community and Congress. “Only the
chairman and vice chairman and the two staff directors of each
intelligence committee were told about it," he says. The reason?
“They were thinking that this computing breakthrough was going to
give them the ability to crack current public encryption."







Possible explanations for passive decryption capabilities

I Discrete logs in Oakley Group 2
I Precomputation for a single 1024-bit prime allows passive

decryption of connections to 66% of VPN servers and 26% of
SSH servers.

I Backdoored RNGs
I Example: Dual-EC DRBG [CMGFCGHWRS 2016]

I Flawed RNGs
I ANSI X9.31 RNG [Cohney Green Heninger 2017]

I Custom implants
I Example: Shadowbroker dump.



The good news

I TLS 1.3 made many good choices
I Built-in downgrade and man-in-the-middle protection.
I RSA key exchange removed.
I Minimum 2048-bit prime DHE size; fixed nothing-up-my-sleeve

groups.

I Minimum key strengths raised across the board in browsers.

I Non-EC Diffie-Hellman has been removed entirely from many
browsers.

I Fraction of popular sites negotiating 1024-bit Diffie-Hellman
decreased from 37% to 23% in year after our work.

I OpenSSH raised minimum key strengths and removed Oakley
Group 2.
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