
Massachusetts Institute of Technology Handout 3
6.857: Network and Computer Security March 11, 2019
Professors Ronald L. Rivest and Yael Tauman Kalai Due: March 25, 2019

Problem Set 3

This problem set is due on Monday, March 25, 2019 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate PDF. When submitting the problem in Gradescope, ensure that all
your group members are listed on Gradescope, and not in the PDF alone.

You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign
the groups for the problem set. After problem set 3, you are to work on the following problem sets with
groups of your choosing of size three or four. If you need help finding a group, try posting on Piazza or email
6.857-tas@mit.edu. You don’t have to tell us your group members, just make sure you indicate them on
Gradescope. Be sure that all group members can explain the solutions. See Handout 1 (Course Information)
for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must be provided as a separate pdf.
Mark the top of each page with your group member names, the course number (6.857), the problem set
number and question, and the date. We have provided templates for LATEX and Microsoft Word on the
course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Our department is collecting statistics on how much time students are spending on psets, etc. For each
problem, please give your estimate of the number of person-hours your team spent on that problem.

Problem 3-1. Prime Generation

We’ve talked in class about various algorithms and techniques that use primes and finite fields. In this
problem, we’ll implement some of the basic operations and primitives over finite fields.

We’ve included a Python skeleton, but feel free to use whatever language you’re most comfortable with.
You’ll need arbitrary-precision integers, so you’ll either have to write your own library, or use a language
that supports them (e.g. Python, Sage or Java with java.math.BigInteger).

Many of these operations are implemented in built-in libraries; please don’t use these or other libraries. We
do expect you to use:

•Arbitrary-precision integers, with addition, subtraction, multiplication, division, remainder/modulo,
and other basic arithmetic. Don’t use built-in functions for checking primality or doing modular expo-
nentiation, such as Python’s pow function with 3 arguments.

•Random number generation, including generating a uniformly random integer in a range (such as
random.randint in Python). Don’t use built-in functions for generating a random prime. You don’t
have to use or write a cryptographically secure random number generator, though that would be a good
idea for a real system.

A good rule of thumb is that, if using the library function makes the problem trivial, you probably shouldn’t
use the library.

Please submit a copy of your code along with your writeup.

Let’s begin! We’ll be aiming for a very weak security level, so we’ll be working with numbers that are around
128 bits long (around 2128). Your computations should be able to finish in well under a minute.

6.857 : Handout 3: Problem Set 3 2

(a) Modular Exponentiation We often need to take exponents ab modulo a number m. Unfortunately,
b can be large (as large as m), so multiplying b times isn’t fast enough. Implement fast modular
exponentiation via exponentiation-by-squaring.

(b) Random Prime Generation Our next task is to generate a random b-bit prime (in other words,
sample a uniformly random prime between 2b−1 ≤ p < 2b). Primes are pretty dense (a random b-bit
number is prime with probability O(1/b)), so it’s enough to just pick random numbers and check if
they’re prime.

One simple test for primality uses Fermat’s Little Theorem: if p is prime, then for any 0 < a < p,

ap−1 ≡ 1 (mod p) .

It turns out that the converse is almost true: for almost all random numbers m, if 2m−1 ≡ 1 (mod m),
then m is prime (there are some composite numbers m such that this is also true, but these are
exponentially rare). This is called the Fermat Primality Test (with base 2). Implement this test, and
use it to write a method to generate a random prime with b bits.

Generate a prime with 128 bits. What prime did you pick?

(c) Picking a Safe Prime and a Subgroup of Prime Order Often, we want to generate a safe prime
p of the form p = 2q + 1, where q is also a prime. (This is particularly useful for discrete-log based
systems, like ElGamal or Diffie-Hellman.) Write a method to generate a safe prime.

Then, write a method to pick a generator of Q∗
p (the group of quadratic residues modulo p). Hint:

How could you verify whether a particular element of Z∗
p is a quadratic residue? What would it’s

order in Z∗
p be? About half of the elements are quadratic residues, so it’s okay to just sample and

verify.

Generate a safe prime with 128 bits and find a generator of Qp. What prime and generator did you
pick?

(d) Breaking ElGamal over Z∗
p Consider a variant of the ElGamal cryptosystem using Z∗

p for a safe
prime p = 2q + 1: we use a generator g of Z∗

p (with order p− 1), a private key 1 ≤ x ≤ p− 1, a public
key gx, and encrypts a message m ∈ Z∗

p as (gy, gxy ·m).

Unfortunately, this scheme isn’t semantically secure, because an adversary can learn whether m is
a quadratic residue or not. Describe a method of determining this. Hint: What you get when you
multiply two quadratic residues? When you multiply a quadratic residue by a quadratic non-residue?
Then, use these facts to determine whether m is a quadratic residue.

Now, implement this attack: given p = 2q + 1, g, gx, gy, and gxym, write a function that outputs
whether m is a quadratic residue.

Run your algorithm on the following input, and tell us whether m is a quadratic residue.

p = 261559759947351029532457942104910865303

g = 194286524128031642142474107184510601326

gx = 198945838169134496994751864693096545284

gy = 162960645829528127846175960244367199327

gxym = 181937067363429702065627884694752413851

Problem 3-2. Computing on Secret Shares

In this problem, we will explore an interesting and useful property of Shamir’s secret sharing scheme, which
is that it admits additive homomorphisms over secrets.

Suppose Alice has a secret s that she has shared among n friends using the t-out-of-n Shamir’s secret sharing
scheme. Now, suppose she wants to update the secret shared among these friends to s + 1.

6.857 : Handout 3: Problem Set 3 3

(a) Explain how Alice can update the secret to s+1 without knowledge of s. Your solution should involve
Alice sending an update to all n parties that can be applied in parallel. Explain why your answer is
correct.

Now, suppose that Alice has a secret sA and Bob has a secret sB . They have shared this secret among n
friends using the t-out-of-n Shamir’s secret sharing scheme using the same prime p. Assume Alice and Bob
have the same set of n friends. In other words, if we call call A1, . . . , An the shares of sA and B1, . . . , Bn

the shares of sB , then friend i has both Ai and Bi. Suppose the friends wish to compute shares of the secret
sA + sB mod p.

(b) How can the friends compute these shares without receiving any additional information? Argue the
correctness of this process.

Suppose a group of n billionaires want to compute their average net worth without revealing their own net
worth. We assume that there exists a private communication channel between each pair of billionaires, and
we assume that the group has agreed on a prime p and a threshold t. Furthermore, we assume that all
billionaires will follow the protocol you give in part (c). The only security guarantee that we require is that,
after the protocol is complete, any group of t− 1 billionaires that collude to determine the net worth of any
of the other billionaires learns no additional information about another billionaires net worth beyond what
can be learned from the average and from the net worth of each of the t-1 colluding billionaires.

(c) How can these billionaires use Shamir’s Secret Sharing to achieve their goal? Argue that your protocol
is correct and achieves the security requirement described above.

Problem 3-3. Block Cipher Attacks and MACs

Suppose Alice wants to send Bob an encrypted and authenticated message M . Alice and Bob share a random
(long) secret key K. In this question, we assume the standard notion of a secure MAC (i.e., security against
adaptive chosen message attacks - see Lecture 7 notes for details).

(a) For this part of the question, assume we have a standalone CPA-secure symmetric encryption scheme,
and a standalone secure MAC. As stated in lecture 7, if we encrypt using this CPA-secure encryption
scheme and then compute a MAC on the ciphertext (and append that to the ciphertext), we get a
CCA-secure encryption scheme. In other words, we showed that for an encrypted ciphertext C =
EncK1

(M), that sending C||MACK2
(C) was CCA-secure (provided EncK1

(M) is CPA-secure and
MACK2

(M) is a secure MAC). However, what happens if we instead compute the MAC on the
plaintext, then encrypt the plaintext and append that MAC to the resulting ciphertext, i.e. we send
EncK1(M)||MACK2(M)? Give an example of an attack that breaks CCA-security for this scheme.

(b) Recall that in CMAC, we use a key K1 for all blocks except the last, and a fresh key K2 for the last
block. Let’s suppose Alice and Bob are experimenting with the security of CMAC, and are trying to
develop a secure MAC scheme using CBC.

1. What can go wrong if we use the same key K for all the blocks in CMAC?

2. In their variant of CMAC, Alice and Bob decide to use key K2 in the first block, and K1 in all
other blocks. Explain why this does not solve the problem and give an example of an attack that
breaks this MAC.

3. Now Alice and Bob decide to use CMAC - all blocks use key K1 except the last block, which uses
key K2. However, they decide not to fix the IV value at 0, (i.e. the IV can vary). Does this give
a secure MAC?

