
Massachusetts Institute of Technology Handout 2
6.857: Network and Computer Security Feburary 11, 2019
Professors Ronald L. Rivest and Yael Tauman Kalai Due: Feburary 25, 2019

Problem Set 1

This problem set is due on Monday, Feburary 25, 2019 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate PDF. Have one and only one group member submit the finished
problem writeups. Please title each PDF with the Kerberos of your group members as well as the problem
set number and problem number (i.e. kerberos1 kerberos2 kerberos3 pset1 problem1.pdf).

You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign
the groups for the problem set. After problem set 3, you are to work on the following problem sets with
groups of your choosing of size three or four. If you need help finding a group, try posting on Piazza or email
6.857-tas@mit.edu. You don’t have to tell us your group members, just make sure you indicate them on
Gradescope. Be sure that all group members can explain the solutions. See Handout 1 (Course Information)
for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must be provided as a separate pdf.
Mark the top of each page with your group member names, the course number (6.857), the problem set
number and question, and the date. We have provided templates for LATEX and Microsoft Word on the
course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Our department is collecting statistics on how much time students are spending on psets, etc. For each
problem, please give your estimate of the number of person-hours your team spent on that problem.

Problem 1-1. Security Policy for Delivery Robots

In January 2019, Amazon started testing autonomous package delivery with little robot vehicles. See
http://fortune.com/2019/01/24/amazon-delivery-robots-seattle/ or https://www.dailymail.co.

uk/sciencetech/article-5354457/ for more information. (Feel free to find or use other relevant sources.)

Write a set of basic functionalities that these sidewalk robots should have, and then describe an ideal security
policy for these functionalities. Who can control these robots, and what happens if a robot is being attacked?
How fast can the robot move, and what happens if the sidewalk is blocked? What other situations might
arise and how should the robot and other agents react?

The policies you come up with should address each of the security goals discussed in class, though focus on
the one(s) that are most relevant for robots. Given the time constraints and the complexity of the problem,
we expect your solutions to be less than comprehensive. That being said, keep in mind that an adversarial
party may try to interact with the robot and try to cause some undesirable result.

(This problem is a bit open-ended, but should give you excellent practice in writing a security policy. We
have included sample solutions from similar questions in previous years on the course website.)

Problem 1-2. One-Time Pad

The country of Bitcoinistan encrypts messages between its embassies using a “one-time pad” scheme. Here
each 8-bit message byte mi is encrypted by exclusive-oring it with an 8-bit pad byte pi to obtain an 8-bit
ciphertext byte ci:

ci = mi ⊕ pi

where ⊕ is the exclusive-or operator on eight-bit values.



6.857 : Handout 2: Problem Set 1 2

A n-byte message M = (m1, . . . ,mn) is encrypted using an n-byte pad P = (p1, . . . , pn) to obtain an
n-byte ciphertext C = (c1, . . . , cn). Message bytes are encrypted using the standard UTF-8 encoding:
https://en.wikipedia.org/wiki/UTF-8 (which is equivalent to ASCII for the usual characters).

This approach would be perfectly secure if each n-byte message M was encrypted with a unique n-byte
pad P chosen uniformly at random from the set of all 256n possible pads. We show in lecture that OTP is
informationally-theoretically secure.

However, Bitcoinistan spends most of its resources mining bitcoins, and doesn’t have enough resources left
over to generate pads properly. Instead of generating one eight-bit byte pi per message byte mi, it generates
only one bit ri per message byte, and defines the eight-bit pad byte pi as

pi = reverse(pi−1) + (ri ∗ 0x5A)

where reverse(x) denotes the reversal of an eight-byte value x (so reverse(00110101) = 10101100), where
+ and ∗ denotes addition and multiplication modulo 256, and where 0x5A is the eight-bit byte constant
01011010. Also, p0 = 0 by definition. They call this scheme the “Cheap One-Time Pad” (COTP).

COTP saves Bitcoinistan a factor of eight in random-bit generation costs.

Note that given pad byte pi−1 there are only two possibilities for pad byte pi, since ri is just a bit (either 0
or 1).

The goal of this problem is to show that COTP is breakable, by means of an example.

The staff has prepared the encryption of a English paragraph using COTP and posted both the ciphertext
and the encryption code on the class website (see cipher.txt and cotp.py under the problem set handout).
This message is 504 characters long, and contains upper and lower-case letters, commas, spaces, and periods
only. As stated above, all characters are represented as 8-bit bytes with the usual US-ASCII encoding
(e.g.“A” is encoded as 0x41).

(a) Carefully explain how you can attack this scheme to derive the message.

(b) Implement your attack scheme in Python. Submit your Python code. (Note, your program may, if
you wish, use a list of English words, obtainable for download in many places on the web.)
NOTE: The file cotp.py uses the library bitstring.py, available either via pip or on the class
website. This file is not necessary for your solution, but it is necessary to run cotp.py and may be
helpful in your solution.

(c) Run your code on the provided ciphertext. What is the hidden message? (If you can only obtain
some of the message, give that.)

Problem 1-3. EFAIL

OpenPGP and S/MIME are two standards that offer end-to-end encryption of emails. You can read a little
bit about end-to-end encryption at https://blog.mailfence.com/end-to-end-email-encryption/. (It’s
not mandatory to read the whole article; only the first few sections are relevant to the problem.)

(a) To start off, how does end-to-end-encrypted email differ from normal email (say, managed by Google
or MIT)? Who might be able to read your normal Gmail emails, and who can read emails that have
been encrypted by OpenPGP? Who can’t read your emails regardless?

Recently, researchers discovered vulnerabilities christened “EFAIL” in the OpenPGP and S/MIME which
could allow attackers to view your email. Read the writeup on the vulnerability at https://efail.de/.
(The sections about CBC and CFB gadgets are somewhat out of scope for this problem, and we’ll focus on
the direct exfiltration attack. If you’d like to dive deeper, you can also watch the conference presentation at
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak).



6.857 : Handout 2: Problem Set 1 3

(b) Briefly describe the model of the attacker. What data does the attack require? Does the attack require
any special resources or servers? With this attack, now who could read your encrypted emails?

(c) The direct exfiltration attack falls into a broad class of attacks called replay attacks, in which an
attacker can resend correctly encrypted data to achieve adverse results, even without knowing the
plaintext or encryption key. More sophisticated replay attacks may use only a fragment of the original
ciphertext/plaintext. Describe one way to prevent, or at least detect a replay. What requirements or
computational overhead does this impose on your email client/email server?


