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1 Introduction

Ransomware is a form of malicious software that prevents users from accessing their system until

they pay a ransom. The outline for a typical attack is as follows: (1) Infection, (2) Encryption,

(3) Extortion, (4) Decryption [1], where encryption is executed using a key that is inaccessible

to the user and must be obtained from the attacker. Ransomware attacks have gained a lot

of popularity over the last year, affecting systems that contain critical data such as health care

providers, government entities and multinationals, and also bringing great profits for attackers [1].

For example, in 2018 the city of Atlanta was hit by a costly ransomware attack [2]. As ransomware

victims invest large amounts of resources to prevent and mitigate these attacks and recover data,

we believe it is important to explore variations of this malware to understand the possible risks

that systems are exposed to.

This paper proposes two novel variants of ransomware attacks, where each provide an alter-

native to ransom payments in order to regain access to their system. The first, RansomShare,

enables a user to decrypt their files once they have successfully infected a minimum number of

other users. The second, Detention, enables a user to decrypt their files by computing a solution

to a puzzle that is guaranteed to take a predetermined bounded amount of time, with the user

having the option to pay chosen amounts to reduce this time proportionately.

The remainder of this paper is divided into four sections. Section 2 reviews the relevant schemes

used to implement a proof of concept for the two proposed versions of ransomware. Section 3

describes the methodologies of construction for both variants of ransomware. Section 4 describes
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the procedures used for testing the two implementations. Finally, Section 5 concludes with remarks

on the potential uses, limitations and extensions for both Detention and RansomShare.

2 Background

In this section, we briefly review two key schemes, Shamir Secret Sharing and Time Lock Puzzles,

that form the basis of obfuscation and recovery for RansomShare and Detention respectively.

2.1 Secret Sharing

Threshold schemes are useful for dividing up some secret S into n shares such that two properties

hold:

1. It it possible to reconstruct the secret with k or more shares where k ≤ n.

2. Any combination of less than k shares reveals nothing about S.

Shamir Secret Sharing [3] is a (k, n) threshold scheme. The scheme generates a random k − 1

degree polynomial,

f(x) = a0 + a1x+ a2x
2 + a3x

3 + ...+ ak−1x
k−1

and hides the secret S as the constant term in the polynomial, such that

f(x0) = S.

The scheme then distributes n distinct points (xi, yi) along the polynomial f(x), where i ∈ [1, n].

Since the secret as shown above is evaluated at x = 0, (secret = the constant coefficient of order

zero = a0), no shareholder should receive the point (x = 0, a0).

This scheme is used by RansomShare in order to allow an infected victim to solve for a secret

which can be exchanged for their corresponding secret key. For each additional victim they infect, a

victim acquires a unique share to their personalized secret. For a k solvable Shamir Secret Sharing

scheme, only when t ≥ k shares have been acquired, can a victim correctly solve for their secret.

For the purposes of this paper, we set k = n.

2.2 Time-Lock Puzzles

Time Lock Puzzles are designed using cryptographic properties with the goal of preventing a solver

from using parallel or distributed computing to solve the problem faster. This is done by forcing

2



the solution of the problem to be intrinsically sequential. For this paper, we focus on using the

general approach described by Rivest et al. [4] that utilizes the forcibly sequential nature of solving

a large squaring problem.

A secret message M is first encrypted using key K, where K needs to be sufficiently long such

that guessing is infeasible. For the purpose of this paper, the AES encryption standard is used,

since the RC5 scheme used in the original paper has been broken. Next, K is locked such that a

squaring problem must be solved. The difficulty of such a problem is dictated through a solver’s

throughput in calculating squarings per second and finally, the number of seconds that the puzzle

is intended to take to solve. In order to decrypt M , key K must first be unlocked. For the purposes

of this paper, the secret message M will be the AES key used to encrypt a file system, while the

remainder of the scheme remains unchanged.

Firstly, a composite modulus n is generated as a product of two large randomly generated

primes p and q.

n = pq.

A sufficiently long AES key, K, is then used to encrypt the message M and produces a ciphertext

CM ,

CM = EncK(M).

Then, a random a modulo n where 1 ≤ a ≤ n is picked so that K is locked as follows,

CK = K + a2
t

(mod n),

where

t = TS,

and T is the number of seconds required to solve the Time Lock Puzzle and S is the number of

squarings modulo n that can be performed by the solver per second. Locking K more efficiently

requires the following computations:

φ(n) = (p− 1)(q − 1),

e = 2t(mod φ(n)),

b = ae(mod n).

At this point, the Time Lock Puzzle is generated and represented as (n, a, t, CK , CM ).
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Since p and q are not given to the solver, solving the puzzle in the efficient method described

above would require factoring n such that φ(n) can be computed. However, it is known that

factoring n is a computationally hard problem. As a result, the fastest way to unlocking the puzzle

reduces to a repeated squaring problem, which has been noted to be intrinsically sequential, thus

enforcing some guarantees on the solve time bounds.

2.3 Secure Communication: Riposte

Although secure communication is outside of the scope of this project, this section briefly dis-

cusses one method by which this could be achieved. This is important, because the execution

of our ransomware attacks requires communication over a network between the attacker and the

victim’s machine, while protecting the anonymity of the attacker. In order to ensure this and

provide traffic-analysis-resistance while scaling widely on the network, we propose using Riposte.

Riposte is a messaging system developed at Stanford University that offers a number of security

and scalability properties that are essential for the success of our ransomware attacks. Firstly,

Riposte protects against traffic analysis attacks which is vital for maintaining the anonymity of

the network which the attacker communicates over with the victims’ machines. To ensure staying

anonymous on a larger scale, deploying three different servers (three non-colluding attacker ma-

chines) for the attacker can guarantee building an anonymity set of about 3 million machines in 32

hours. It is important to note that the anonymity of users over anonymous networks like Tor can

be broken using certain traffic analysis attacks as several research papers have shown which means

that Riposte offers more resilience to these types of attacks than other existing anonymous net-

works. Secondly, Riposte prevents malicious clients from anonymously executing denial-of-service

attacks which allows the attacker to easily detect and exclude unwanted requests from any machine.

Finally, Riposte allows scaling up to anonymity set sizes of millions for certain latency-tolerant

applications. This will allow ransomware attacks to spread out to large number of machines while

still maintaining the security features offered by Riposte. Since ransomware already uses standard

public-key encryption to send a message from attacker to victim, point-to-point private messaging

channels can be easily established while using Riposte [5].

3 Methodology

This section provides a breakdown of the different components constituting the RansomShare and

Detention schemes. First, the mechanism by which the file system is encrypted and decrypted is

outlined. Next, the key components of RansomShare are discussed starting from victim infection
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and identification to malware redistribution and secret exchange which operate under the guise of

Shamir Secret Sharing. Finally, the procedure by which Detention is mounted on a victim’s machine

is described along with a brief summary of the communication and key recovery protocols.

For the remainder of this section, the master (original attacker’s) machine is referred to as

MASTER.

3.1 Skeleton File-System Encryption Scheme

The encryption scheme developed uses Advanced Encryption Standard (AES) to encrypt the files

on the victim’s machine. The AES session cipher that will be used to encrypt the files gets generated

locally on the victim’s machine. In order to protect this key from being exposed, it gets encrypted

on the victim’s machine. In RansomShare, MASTER generates RSA key pairs associated with each

victim where the RSA public key is used to encrypt the AES session cipher once all target files are

encrypted. As for Detention, the AES cipher is encrypted using another AES key which is locked

with a time lock puzzle. The AES encryption is done in Cipher Feedback Mode (CFB) which makes

a block cipher into a self-synchronizing stream cipher. CFB allows us to encrypt any file regardless

of its size as the block size is dynamically chosen to fit the size of the data to be encrypted. Since

the attacker uses the same AES key for encrypting more than one file, the attacker needs to generate

different Initialization Vector values (IV) for each file it encrypts. The IV is a 16 bytes long value

that is randomly generated and stored at the end of each encrypted file to be used later on for

decryption. The way the IV is generated and stored in each file could be altered to make it hard

for an adversary to know the values used. Note that a ”.enc” extension gets added to the end of

every file once it gets fully encrypted, as a means of indicating which files have been encrypted.

3.2 Skeleton File-System Decryption Scheme

The scheme used to decrypt the encrypted files on a victim’s machine is, as expected, analogous

to the encryption scheme developed. Decryption is performed on files ending with ”.enc” and

that extension gets removed when decryption is completed. The first step for decrypting the file

system requires decrypting the AES key that was used for encrypting the file system on the victim’s

machine. In RansomShare, this is done using the RSA secret key SK that belongs to that victim.

In Detention, this requires solving the Time Lock Puzzle in order to get the AES key K2 that was

used to encrypt the encryption AES key K1. K2 will then be used to decrypt K1 which in turn

will be used to decrypt the file system. Once K1 is decrypted, it is used along with the IV value

that was used for encrypting a file, which gets retrieved by reading the last 16 bytes of every file.
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From this, an AES decryption cipher is generated which is then used in CFB mode to decrypt the

file. This procedure is repeated for all encrypted files.

3.3 RansomShare: Shamir Secret Sharing Approach to Key Security

RansomShare follows the regular file encryption scheme outlined in section 3.1. Once a victim

has been infected, they then have the option of either acquiring the key from MASTER using some

third party payment system or infecting n other machines. RansomShare’s steps can broken down

as follows: (1) Initial payload communication (Figure 1a), (2) Victim identification (Figure 1b),

(3) Spread (Figures 1c, 1d), (4) Secret Exchange (Figure 1e, 1f). For the remainder of this section,

the victim machines’ are denoted by Vi for i ∈ Z+.

Whenever one victim V1 infects another victim V2, V2 will begin their own process of following

steps 2-4.

3.3.1 Initial Payload Communication

This step consists of MASTER communicating the payload to a victim V1. If V1 is convinced to open

the payload, then RansomShare will begin its process of infection.

3.3.2 Victim Identification

After V1 executes the payload, the payload will communicated with MASTER and report that a new

infection has occurred. Since V1 was infected by MASTER, there is no previous unique identifier to

send to MASTER. MASTER then generates a new unique identifier (UID1) and RSA public, private key

pair (PK1, SK1), but only responds to the initial infection with UID1 and PK11. The payload

then encrypts V1’s file system as described in section 3.1.

3.3.3 Spread

Once V1 has been infected, they are presented with two recovery options. One is to use third party

payments to retrieve SK1 from MASTER. The other is to infect n other machines. In order to do

this, V1 needs to send the payload along with UID1 to another victim V2.

If V2 were to run the payload sent to it by V1, the victim identification step begins but V2

sends UID1 as the previous unique identifier (this informs MASTER that V1 is the direct cause of

this infection).

When a successful infection occurs, the next time V1 requests its shares, MASTER will respond

with one more share than before.
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V1 will repeat this process until there are n successful infections as it will receive n total shares.

3.3.4 Secret Exchange

Once V1 has n shares it will solve for the Shamir secret that corresponds to the given shares. V1

can then exchange this secret for SK1 which it can then use to decrypt its file system as outlined

in section 3.2.

3.4 Detention: Time Lock Puzzle approach to Key Security

The Detention payload consists of a file system encrytor/decryptor, puzzle generator, communica-

tor and a universal RSA public key UPK that is generated by MASTER and is static across all payloads.

This public key, is used to secure all sensitive communications from victim to MASTER.

Detention’s steps can broken down as follows: (1) Mounting the Payload (Figures 2a, 2b),

(2)Communication with MASTER (Figures 2c, 2d), (3) Solving the Time Lock Puzzle (Figure 2e).

3.4.1 Mounting the Payload

Detention, once executed, attempts to load a valid Time Lock Puzzle checkpoint file from the file

system. If none exists, this implies that either the ransomware is being executed for the first time,

or it crashed before a puzzle could be saved. In this scenario, a new 32 bit random unique identifier

(UID) is generated to identify the victim to MASTER, in addition to a new 256 bit random AES key K1

used for encrypting and eventually decrypting the file system as described in sections 3.1 and 3.2.

Next, the file system structure tree with absolute paths pointing to all files is extracted and a new

256 bit random AES key K2 is generated, which is used to encrypt K1. Then, K2 is Time Locked

and the resulting Time Lock Puzzle is saved as a checkpoint file. Subsequently, during puzzle

generation, a secret triplet file ST consisting of (EncUPK(K1), EncUPK(K2), EncUPK(UID)) is

also stored as a secret communications checkpoint file, while all unencrypted sensitive information

(i.e. K1, K2 and Time Lock variables) that would enable a victim to directly decrypt their file

system is deleted from memory. Next, two processes are started; one handling communication

with MASTER and the other for solving the Time Lock Puzzle.

3.4.2 Communication with MASTER

The victim’s machine, once infected, will attempt to communicate with MASTER for two purposes:

transmitting encrypted secret infection data represented by ST and requesting easier puzzles that

master will generate based off of the parameters in ST and a payment made by the victim.
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The communication process begins by trying to load the secret triplet checkpoint file ST. If no

such file exits, then communication of ST to MASTER is assumed to have been successfully completed

in the past. If, however, said file exists, then it is loaded and post requests are sent to MASTER

until confirmation of receipt is received, at which point the ST checkpoint file is cleared from the

file system.

Once communication of ST has been verified, the victim periodically requests easier puzzles

from MASTER. A request is successful if and only if MASTER receives a payment with a valid UID, at

which point a new puzzle with difficulty proportionate to

(TOTAL HISTORICAL PAYMENTS + CURRENT PAYMENT)/MAX PAYMENT AMOUNT

is generated. This is only possible, however, due to the information necessary for generating new

puzzles being communicated to master through the transmission of ST. Once an easier puzzle is

transmitted in response to a corresponding payment, MASTER updates its internal state and the

victim continues to periodically request easier puzzles, receiving one only when another payment

is made.

3.4.3 Solving the Time Lock Puzzle

The solver process uses a custom-built repeated squaring mechanism that enables for checkpoints

to be saved and estimated time to completion to be calculated and displayed at regular intervals.

This ensures that if Detention crashes the victim can continue solving the puzzle without having

to restart the computation at the original puzzle difficulty.

Once the puzzle is solved, Detention unlocks K2 and then decrypts K1 and proceeds to decrypt

the file system as described in Section 3.2.

4 Experimentation and Results

RansomShare and Detention were tested by having them only encrypt a subset of files of varying

sizes on the infected machines. Although the functionality allowed for detection and encryption

of the entire file system tree, for the purposes of testing, controlled directories were used. The

remainder of this section outlines the testing methodology for both ransomware schemes and the

observed performance.

It should be noted that all of the experiments detailed in this section were tested both directly

with the Python scripts and also with operating system specific one-file self-contained executa-
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bles that were generated using the PyInstaller package. Generating these executables allowed for

mounting attacks on systems that did not necessarily have all the required system dependencies.

4.1 RansomShare

RansomShare was successfully tested with varying number n of secret shares required to construct

the Shamir secret. For the purposes of this paper, experiments were conducted on n ∈ [1, 6],

however the implementation is capable of handling arbitrarily large values of n. The initial payload

was generated on MASTER and distributed to the first victim V1. In these experiments, V1 distributes

the payload along with the its UID1 to the n other machines set up for the experiment.

The payload was then executed on the newly targeted victim machines resulting in infection.

V1 was then able to decrypt their files only when n new victims were infected and successful

commincation was established between all parties involved and MASTER.

4.2 Detention

The two key components of Detention are the time puzzle difficulty tuning and the recovery of

incomplete puzzles.

The system was tested to completion after making zero, one, and several payments. The

implementation included an extra feature that displayed a progress update to see the change

in the expected time remaining to encryption based on the expected number of squarings the

machine could compute. For times longer than ∼ 15 minutes, this feature was used to verify that

the expected time until completion was reduced proportionally to the aggregate payment made to

MASTER.

In all cases, the execution was run both with and without interruptions to test the recovery ca-

pability that saves a partial solution to the puzzle. Simulations of communication failures between

MASTER and the victims were also performed and this did not alter the behavior of the process

running the time lock puzzle.

5 Conclusion

RansomShare is a powerful novel ransomware as it coerces trusted users to become part of the

scheme. This can be a tremendous benefit to distributors of ransomware as potential victims

may be more susceptible to opening a file if it comes from a user they believe to be trustworthy.

However, RansomShare does have its limitations. In its current state, it relies on trusting the
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fact that new connections are new infections. A fairly simple way to exploit this is to simply

spin up multiple empty instances to be infected. This can then lead to a real victim thwarting

RansomShare and retrieving their files without ever infecting a machine that may pay the ransom

or has the potential of spreading RansomShare to even more machines. One way this can be

mitigated is by limiting the original victim to only receive an additional share from an infection if

that infection went ahead and paid the ransom. Such a modification would ensure that payments

must eventually be made by direct neighbours and as such is a sufficient verification method.

Unlike RansomShare, Detention provides a more standalone approach to ransomware. Even if

communications are cut off between the victim and MASTER, the ransomware can still be thwarted by

solving a Time Lock Puzzle. Additionally, providing victims with the ability to make incremental

payments to reduce unlock times proportionally leads to a probability distribution over payment

values versus a typical nothing or all scheme, thus having potential impacts on the expected value

of return for the attacker. One powerful extension to Detention would be to capitalize on the

time factor of the Time Lock Puzzle. Since Detention is expected to be executed on a victim

machine such that the solver works away at solving the puzzle, this means that an attacker could

incorporate additional processes into the payload that would execute wanted code and thus leach

off of a victims compute power. This could be used for varying purposes such as Bitcoin mining,

anonymous routing schemes and spam generation.
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(a) MASTER sends the payload to a victim V1. (b) V1 opens a communication channel with
MASTER to report that it has been infected. Since
V1 received the payload directly from MASTER,
it does not report an infection source. MASTER

sends V1 the public key PK1 that it shall use and
its identifier.

(c) V1 periodically requests the shares to com-
plete the secret to MASTER, who temporarily
sends back no shares since it has received no
reports of victims infected by V1. Simultane-
ously, V1 sends a new victim, V2, the payload
along with UID1.

(d) V2 executes the payload received from V1 and
opens a communication channel with MASTER to
notify that it has been infected by V1. MASTER

sends V2 its corresponding public key and iden-
tifier.

(e) V1 requests shares from MASTER again, and
obtains one share, since MASTER has received ex-
actly a notification of exactly one victim infected
by V1.

(f) After V1 has successfully infected n victims,
it solves for its Shamir secret and sends it to
MASTER. MASTER verifies the correctness of the
answer, and then sends V1 the secret key to de-
crypt their files.

Figure 1: RansomShare Flow Chart
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(a) MASTER sends the payload to a victim V. (b) V executes the payload which generates a
unique identifier UID, a key K1 to encrypt their
files, a key K2 to encrypt K1, and a time lock
puzzle that solves to K2. The victim reports
to MASTER that it has been infected and sends
over K1,K2 and its identifier. After successfully
sending this to master, V deletes both keys.

(c) V makes a payment to a third party pay-
ment manager that includes its unique identifier,
and requests an easier puzzle to MASTER. It then
makes a request for an easier puzzle to MASTER.

(d) MASTER confirms that a payment has been
made on behalf of V. MASTER proceeds to send V

a new puzzle that is proportionally easier to the
total payments made so far by V that also solves
to K2.

(e) Upon completion of (approximately) the
time lock puzzle due date, the puzzle reveals K2,
which is used to decrypt K1, and consequently
the entire file system.

Figure 2: Detention Flow Chart
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