
An End-to-End Encryption Scheme for

SecureDrop

Andrés Náter Erica Santana Patrick Wahl

May 2018

Abstract

In an age of heightened surveillance and a questionable right to pri-
vacy, whistleblowers like Chelsea Manning and Edward Snowden become
important figures in the fight for government transparency and account-
ability. However, many face fears of being identified and silenced before
being able to tell their stories. SecureDrop is a platform allowing whistle-
blowers to communicated with journalists anonymously and without fear
of retribution from higher powers. However, SecureDrop is not end-to-end
encrypted, that is, messages and files sent from the whistleblower to the
journalist are plaintext and can be read easily if an adversary can compro-
mise the server before it encrypts them. Although SecureDrop’s primary
concern is with preserving anonymity of the user rather than hiding the
materials, identification of the messages could lead to efforts to shut down
a story before the public is able to hear about it. We therefore propose and
prototype a secure way of sending encrypted messages to journalists using
the SecureDrop platform. We develop a browser extension which, when
used in conjunction with SecureDrop, can help prevent sources from being
deanonymized through Tor browser JavaScript watering hole attacks. We
evaluate the tradeoffs in security and ease-of-use of SecureDrop under our
new scheme.

1 Introduction

Since Daniel Ellsberg famously released the Pentagon Papers in 1971, whistle-
blowers, or those who release secret information to the public (often knowing
they face severe punishment), have become essential in the fight for holding
those in power accountable for their actions. This has led to organizations
cracking down on those who intend to leak classified information, and thus to
new ways of leaking said information anonymously and securely.

1



2 SecureDrop

2.1 Background

SecureDrop is an open-source platform from the Freedom of the Press Founda-
tion. It is designed for whistleblowers, from here on referred to as “sources,”
to share sensitive information with journalists and media organizations. The
platform aims to provide safer journalist-source communication by reducing the
metadata trail and eliminating third parties. SecureDrop’s workflow includes
six separate parts, as seen in Figure 1, but we will focus primarily on two of
them: the source area, where sources access the web page and upload docu-
ments, and the SecureDrop area, containing the server where files are encrypted
and stored.

Figure 1: SecureDrop Architecture

SecureDrop requires all communication over the internet to be routed through
the Tor Browser. Tor Browser is based on Mozilla Firefox, and routes all traffic
through the Tor network, which encrypts the data, source, and destination ad-
dresses multiple times and sends them through a series of relays which decrypt
one layer of data at a time.

In this way, none of the nodes in the network can figure out both the source
and destination addresses, and neither can those surveilling the data being sent,
allowing SecureDrop users to remain anonymous.

Journalistic organizations, such as The New York Times, can set up Secure-
Drop instances for use by sources wishing to contact them. The platform uses
two physical servers, one public-facing server that stores messages and docu-
ments and another one which monitors the security of the public-facing one.

2



The public-facing server is a web application and Tor Hidden Service that ac-
cepts messages and documents from sources who use Tor. The server encrypts
the data received using GPG, which is an implementation of the OpenPGP stan-
dard. The use of Tor protects the user’s data from from third-party attackers
in transit.

As illustrated in Figure 2, the source submits files through Tor, which are
then sent to the news-outlet server through the internet. Once they reach the
server, they are encrypted with the journalist’s public key and stored on the
server. The journalist can then access the encrypted files and retrieve them
using a flash drive. To view the files, the journalist makes use of a computer
that is air-gapped, i.e. not connected to the internet, the only computer which
contains the private key and is therefore able to decrypt the files.

Figure 2: A closer look at the architecture we are concerned with

Sources are given a codename which allows them to establish a connection
with a particular news organization. That same codename can be used after-
wards by the source to read any messages from the journalists or to send more
information. All the documents, messages, and responses from a codename are
grouped together into a collection. It is important to note that the journalists
have a distinct codename to identify the source.

2.2 The need for end-to-end encryption

SecureDrop is currently not end-to-end encrypted. The files and messages
whistleblowers submit are only encrypted once they reach the news outlet server.
This potentially enables an adversary to intercept the files and messages when
they reach the server but before they are decrypted, thus gaining access to sensi-
tive information. One way to prevent this is to encrypt files and messages before
they are sent to the journalist, on the client side. This would be an end-to-end
(E2E) encryption scheme.

One method of providing E2E encryption outside the browser would be for

3



SecureDrop to provide a client application which provides an anonymous con-
nection to the server and client-side encryption functionality. This would be
very secure, compartmentalized, and easy to use, even for the non tech-savvy
user. However, there is a serious problem. If a government entity were to dis-
cover that a SecureDrop user has an application installed on their machine to
be used for the express purpose of leaking secret information, the entity could
use this information to incriminate the source.

A safe way sources can currently achieve E2E encryption is by encrypting
files using PGP on their own computer, then uploading them the normal way.
SecureDrop provides a public key allowing users to do this. The security here
would be airtight — even if an adversary were to intercept the message, they
would be unable to decrypt it without knowing the private key (which is stored
on the airgapped computer and thus extremely difficult to access). The problem
is that this might seem threatening to users with no experience with cryptogra-
phy or computing.

For this reason, the SecureDrop team has suggested providing an E2E en-
cryption scheme that runs in the source’s browser. However, this poses a security
risk: client-side encryption via a web browser requires JavaScript to be enabled
in the source’s browser. JavaScript has been used previously in watering hole
attacks designed to deanonymize Tor users [1], so SecureDrop recommends that
the source disables JavaScript due to the risk of these attacks.

If the user could be absolutely sure that the JavaScript they are running is
signed by the developer (SecureDrop), then they could securely run the code
without a chance of being identified by adversaries. We worked on making Se-
cureDrop E2E encrypted by creating a way for users to verify that the JavaScript
their browser is running is signed by the developer, and then implementing this
signing logic in SecureDrop’s software.

3 Implementation

Our implementation consisted of three parts:

1. Client-side logic to encrypt data on the source’s computer

2. Server-side logic to sign pages and send the signature to the source

3. Browser extension to verify signatures based on page content

3.1 Client-side encryption

In the current platform, sources simply upload a file and submit it to the jour-
nalists. However, sources are already provided with the journalist’s public key.
They are encouraged to download this public key and use GPG encryption
software to encrypt their files on their own machine, before submitting. Im-
plementing client-side encryption thus consists of three main steps: giving the
source the option to have encryption done before submitting, retrieving the jour-
nalist’s public key, and actually encrypting the file. Note, however, that before

4



the source is able to make any choice about encryption on their side, they must
enable JavaScript. They are made aware that enabling JavaScript may come
with risks and are provided instructions on how to check the authenticity of the
submission page before enabling JavaScript.

Figure 3: The original document upload interface

As shown in Figure 4, a checkbox was added in the source submission page to
let the source decide whether to encrypt or not. This checkbox lives in a yellow
box to emphasize that checking it is an active decision and not a requirement
or consent. Screens previous to the “lookup” page make use of this yellow box
to emphasize important messages to the source.

Once a file is uploaded, if the page has been verified and JavaScript has
been enabled, the checkbox becomes available and the source can choose to
encrypt or not. If the source chooses to encrypt, the process is executed in
the background without the source having to go through any additional steps.
First, the journalist’s public key is retrieved. The key is retrieved by employing
a XMLHttpRequest object, used in web development to interact with servers
and retrieve data. In this case, it helps retrieve the journalist’s public key from
the URL that contains it. The journalist’s public key is an ASCII-armored PGP

5



Figure 4: Updated interface with checkbox to turn on client-side encryptions
and link to verification instructions

key of the form:
-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFJZi2ABEACZJJA53+pEAdkZyD99nxB995ZVTBw60SQ/6E/gws4kInv+YS7t

wSMXGa5bR4SD9voWxzLgyulqbM93jUFKn5GcsSh2O/lxAvEDKsPmXCRP1eBg3pjU

+8DRLm0TEFiywC+w6HF4PsOh+JlBWafUfL3vwrGKTXvrlKBsosvDmoogLjkMWomM

KBF/97OKyQiMQf1BDJqZ88nScJEqwo0xz0PfcB04GAtfR7N6Qa8HpFc0VDQcILFB

0aJx5+p7nw1LyR37LLoK8JbEY6QZd277Y0/U+O4v6WfH/2H5kQ8sC+P8hPwr3rSg

. . .

n1xbbX4GXQl3+ru4zT6/F7CxZErjLb+evShyf4itM+5AdbKRiRzoraqKblBa4TfJ

BSqHisdcxdZeBe19+jyY6a8ZMcGhrQeksiKxTRh7ylAk7CLVgLEIHLxXzHoZ0oAF

z2ulG+zH9KS9Pe8MQxHCrlyfoQElQuJoYbrYBOu28itvGPgz6+5xgvZROvPoqIkI

k8DYt9lJqUFBeZuFJd5W1TuHKLxueVYvSKeG+e3TjOYdJFvDZInM4cNWr8N92mYS

iphljiHAKVTQeIf1ma07QUH/ul3YC+g07F+BLonIIXA6uQVebv5iLxTgOzIQwHTJ

Vu4MPiQNn1h4dk1RonfV/aJ+de1+qjA8

=XVz8

-----END PGP PUBLIC KEY BLOCK-----

6



After retrieving the journalist’s public key, the input from the file submission
section is fetched and converted into Uint8Array format so that it can be en-
crypted. Encryption is achieved using the OpenPGP.js library, an open-source
JavaScript implementation of the PGP standard, employed in the SecureDrop
project. The library is included in the ¡script¿ portion of the “lookup” page,
where the source uploads the file. Once the source file is encrypted, it is con-
verted into a file to keep consistency with submission protocols. With the cre-
ation of this file, the client-side encryption process is completed.

In order for this feature to be deployed, the official submission protocol
needed to be modified. Currently, the backend retrieves the original file up-
loaded. The file to be retrieved will depend on the value of the checkbox:
checked or not. If the value is checked, the encrypted file will need to be re-
trieved, otherwise the original file can be retrieved. Once the correct file is
retrieved, it can be sent to the server for storage and for the journalist to ob-
tain.

3.2 Server-side page signing

Page signing is very simple. The server generates the lookup page as it would
if the user accessed that page. Instead of sending it as a response, however,
it searches through the page for <script> tags, combines what is inside these
scripts into a single string, and then signs that string using the GPG module
SecureDrop uses for other cryptographic purposes. One problem we encountered
is that signing is done with a private key, which SecureDrop stores on an air-
gapped computer, rendering the server unable to access it for signing. For
document signing, then, we must create a new key pair for each user, using the
private key to sign and remembering the user’s session ID in order to send them
the corresponding public key for verification. The signature is detached and
both the public key and the signature are ASCII-armored for ease of integration
with third-party verification extensions.

3.3 Verification browser extension

We created an example prototype of a third-party Firefox/Tor browser extension
that could be used to verify that the page will run only JavaScript that is signed
by the journalist’s SecureDrop server. Called SafePage, its user interface is
simple: it takes as input a PGP public key and signature, both ASCII-armored,
and prints whether or not the page’s inline JavaScript is verified as genuine.
If the JavaScript is genuine, the user can turn on JavaScript for the page to
perform client-side encryption. The extension uses the OpenPGP.js library, an
open-source JavaScript implementation of the PGP standard, for verification.

It works by reading in the ASCII-armored public key and signature the user
enters, and then injecting a content script into the web page which grants it
access to the document object model (DOM). We had originally planned to sign
and verify the entire web page document, but it is unfortunately not possible
to access the source code file as sent by the server. Instead, content scripts only

7



Figure 5: The SafePage prototype’s interface

have access to the DOM, a browser-parsed version of the code inside the <html>
tags. While this presents a security risk where a malicious entity could inject
JavaScript outside the <html> tags, the risk is mostly or entirely mitigated by
the fact that modern browsers (including Tor) will place scripts outside the
<html> tags into the body of the document, inside the DOM. There is also the
issue of the <!DOCTYPE> tag, which goes outside the <html> tags. We tried
using JavaScript’s XML Serializer to read the whole web page document, but
this causes alterations in the source HTML which would prevent valid signatures
from verifying.

Finally, we decided upon signing only portions of the document inside of
<script> tags. This content is not altered when the browser parses the docu-
ment to create the DOM, and so will be the same both when it is signed and
when it is verified. However, there is a catch: if we only look at the content inside
the script tags, that leaves the page open to vulnerabilities if the tag loads a ma-
licious source inside itself, e.g. <script src=‘www.evil.com/bighack.js’>.
Therefore, we must sign and verify both the tag contents and the tags them-
selves.

The browser extension needs to be third-party, rather than SecureDrop-

8



supported, for precisely the same reason SecureDrop cannot just make a non-
browser client application to upload encrypted documents: so that the user will
not have any incriminating software downloaded on their computer. With a
third-party application, even one designed to be used with SecureDrop, there
is plausible deniability that its intent is to circumvent legal boundaries — it
could have been installed to be used for other purposes; verifying web pages’
JavaScript is a good security practice even for law-abiding citizens!

4 Argument for Security

On the continuum of possible encryption schemes for SecureDrop, we believe our
implementation is more secure but less user-friendly than no E2E encryption at
all, but less secure and more user friendly than manual PGP encryption before
uploading.

An adversary cannot inject malicious JavaScript into the page without al-
tering the page’s signature and preventing it from signing properly, since the
verification extension reads every script tag and uses their contents in verifying.
There is a chance that an adversary could send a malicious public key and signa-
ture along with malicious code. To solve this problem, SecureDrop could trans-
mit its public verification key from a secure, centralized server, which would be
much more difficult to compromise. This vulnerability is also somewhat present
in the current SecureDrop implementation, which sends the public key for man-
ual PGP encryption. An adversary could send a malicious public key, intercept
the encrypted file, and use their private key to decrypt the contents. This is,
however, outside the scope of the problem we are trying to solve.

Otherwise, security is in the hands of the user — if they do not enable
JavaScript unless they have verified the page’s signature, then there is little
chance that they will run malicious code in their browser.

5 Discussion/Conclusion

SecureDrop is an open-source platform. There is a community of coders and
contributors who discuss improvements and looks for bugs regularly. As we
evaluated SecureDrop and a potential project based on the platform, we found
that end-to-end encryption has been discussed before. Many were against it
because of the risks posed by the use of JavaScript and possible exploits with
the goal of deanonymizing sources. Identification of sources in such a context
could lead to dangerous situations for these sources, including life-threatening
ones. The stakes are quite high when it comes to whistleblowing. However,
we also believe that end-to-end encryption is essential for more robust security.
Furthermore, a crucial part of having a platform like SecureDrop be effective
is having it be as user-friendly as possible. A source who is not tech savvy
might have some trouble downloading a key and encrypting their own files on
their machine. Thus, the only way to achieve end-to-end encryption, while

9



removing the burden of encrypting their own files from the source, seemed to
be to implement client-side encryption in the source app using JavaScript. As
long as the necessary precautions, this seems like a sensible and feasible way to
achieve end-to-end encryption for SecureDrop.

References

[1] Dan Goodin. Attackers wield firefox exploit to uncloak anonymous tor users,
Aug 2013.

10


