

 17th May 2018

Distributed Options Exchange on the Ethereum Blockchain
Fredric Moezinia Elliott Forde Quinn Magendanz

moezinia@mit.edu eforde@mit.edu qpm3@mit.edu

Abstract

As the number of participants in cryptocurrency markets has
risen, the founding paradigm of decentralization trustlessness
have been lost. And despite increased market size, the level of
sophistication of cryptocurrency markets like Ethereum have
stagnated.

In an attempt to restore these core principles, and allow
complex cryptocurrency derivatives to be traded, we have
created a secure and decentralized options exchange. This is
known as a Dapp (Distributed Application) which manages an
order book and lets users execute orders manually on a
website.

The system is distributed and confidential, reducing
dependencies on a central servers and exchanges. It is
comprised of indefinite and immutable smart contracts to
enforce all types of contracts in the application.

1 Introduction
Right now, the investment environment around
Cryptocurrencies is very limited and insecure. First of all,
platforms like Coinbase store your currencies for you, which
is both antithetical to the principles of decentralized currencies
and a potentially insecure single point of failure. Secondly, it
is almost impossible (especially as a retail investor) to hold
any non-long position in the market; this has made markets
unbalanced.

Additionally, as smart contract code is immutable once
committed to the blockchain, the infallibility of smart contract
code is of utmost importance. And because smart contracts are
a store for sometimes large amounts of money, they are often
attacked by hackers. We have seen massive amounts of money
stolen from insecure smart contracts. For example, The DAO
(distributed autonomous organization) comprised of a series of
smart contracts was hacked in June 2016, leaking 15% of all
ether in circulation. Because we are creating an application
that will be handling potentially large amounts of money, the
security aspect is vital.

We intend to create a simple decentralized application for
investors to buy and sell Ether options. This flexible type of
financial derivative allows two investors to enter into a trade
that is mutually beneficial. Due to the nature of smart
contracts, the investors are financially bound to the contract.

1.1 Design Principles
Confidentiality: Users are represented by a public key
unlinked to any other form of identification. This guarantees
the same level of anonymity as Ethereum Wallets.

Integrity: Providing integrity for the user is essential
when data is in the form of money. Smart contract code is
immutable once deployed to the blockchain. This facilitates
consistency and accuracy.

Accessibility: The decentralized nature of the system
ensures that contracts will be accessible regardless of access to
the system. The interminability of the blockchain and smart
contracts ensures availability forever.

Non-Repudiation: The smart contracts hold Ether as
collateral, and only distributes at the time of exercising,
cancellation or maturity. This ensures that users are held
liable for the agreed-upon option.

1.2 Smart Contracts
Smart contracts are the core component of our application.
They are similar to object-oriented classes in that they have
methods and attributes, and can be instantiated and referred to
by a pointer: their address on the Ethereum blockchain.
Contracts can also hold and distribute Ether. The functions
and structure of the smart contract cannot be changed once
written to the blockchain, so it is of utmost importance to
ensure its correctness and security.

Calls to smart contract methods are atomic transactions
which need to be mined and included in the blockchain to take
effect. This means that all method calls cost Ether as miners
are providing computation. This system prevents adversaries
from attempting denial of service on the Ethereum network.
However, currently this small cost is offloaded onto the user,
which is not ideal.

2 System Design
The system stack is comprised of a node.js server, a front-end
interface, and smart contracts for logic and data storage. Each
component will be described in detail below. Once deployed,
the smart contracts in our system are unchangeable. On
account of this, the security of all components and interfaces is
of utmost importance. Buggy contracts can catastrophically
render Ether inaccessible or stolen. Our full implementation
can be seen at https://github.com/evforde/eth-options.

2.1 Node.js Server
The server is hosted on IPFS (InterPlanetary file system 5)
which makes it available for as long as the Ethereum Virtual
Machine is running.

The purpose of the server is to provide the client with
scripts to render the UI and to interface with the Ethereum
blockchain. This, however, does not establish a reliance on the
server: all calls to smart contracts may be made manually,
without these server scripts. Thus if the server goes down or
becomes compromised, users’ contracts remain accessible and
safe.

1

https://github.com/evforde/eth-options

Figure 1: System Diagram

2.2 Client
The Client begins with Metamask, a Chrome browser
extension which “includes a secure identity vault, providing a
user interface to manage your identities and Ether on different
sites and sign blockchain transactions.”1 In the system design,
Metamask is used to store a user’s public key username, their
secret key for signing and encrypting transactions, and some
of the users Ether. Further analysis of Metamask reliability is
discussed in Section 3.

The front-end interface is a website for users to view their
options and trade on the global exchange. Upon login via
Metamask, users have access to their personal dashboard and
the exchange listings. Users can view their personal ongoing
offers and active options in the dashboard, and the user can
navigate to the exchange tab to browse and accept open option
offers. Users can also make offers for exchange-traded options
at specific maturity times and strike prices. The user must
have Ether in their Metamask account in order to trade
options. This Ether is used as collateral to ensure users are
held accountable for the option contracts into which they
enter.

Figure 2: Metamask Extension.

2.3 Smart Contracts
When users create an offer for an exchange traded option, they
deploy a new instance of the option smart contract onto the
Ethereum blockchain. Then, their orders are publically
available for other users of the exchange, who may accept an
offer by binding their address to the already deployed contract
and sending the required collateral.

To keep track of outstanding orders, we also create an
order book contract. This stores the address of all current

options in the exchange. The order book holds addresses only
of current options, and is used as our database to populate the
dashboard and exchange on the front-end.

Fulfilled or active options are stored in cookies in the
user’s browser to optimize rendering of the UI. We also
maintain these active options on the blockchain in case
cookies are removed and a user’s options need to be restored.

By using the Ethereum blockchain to store option
contracts and the order book, we remove the dependency on a
central server for data storage. Anyone can read the current
state of the exchange by looking at the order book contract on
the blockchain. This choice also helps provide data integrity,
preventing an adversary from changing option listings.

It is important to recognize, however, that storage on the
blockchain is valuable and therefore expensive. Thus, this
current design for the exchange order book would scale poorly
with the exchange size. An alternative to be considered as the
exchange starts to grow at a faster rate would be to store the
order book on IPFS. This approach would be distributed and
free but increases the implementation complexity. To achieve
the desired decentralization and security guarantees, using the
blockchain for storage is sufficient for this proof of concept.

Figure 3: List of exchange-traded options.

2.4 Option Structure
In our system, an option is the right to purchase 1 Ether before
a certain date (maturity) at a certain price (USD strike). There
are two sides, the buyer and seller, who enter into this option
contract for making this trade at the specified price (also
called the premium). The option contract contains fields for
the buyer and seller’s public ethereum addresses, the type of
option (call or put), the strike price at which the option may be
executed, and a cancellation and a maturity time. All these
fields and a certain collateral are provided by user who
initializes the option when they create an offer. A second user
who agrees upon these terms may then accept the option. The
contract can be thought of as an escrow held in the blockchain.

We implement physical settlement Options, meaning
Ether is transferred to the buyer at the time of exercising. This
is because the only currency the system handles is Ether, not
USD.

2.4.1 Option Creation and Offer Acceptance
If the user does not find an existing option offer on the
exchange which they want to accept, options can be created
and offered to all other users on the exchange. When a user

2

creates an option, this instantiates a new smart contract as
shown below.

constructor(uint _strikePrice,
 uint _maturityT, uint _cancellationT,
 uint _premium, string _traderType,
 address _orderBook) public payable {
 require(_maturityT > block.timestamp);
 require(_cancellationT > block.timestamp);
 require(_cancellationT <= _maturityTime);
 if (traderType == “buyer”) {
 require(valueSent >= premium);
 }
 else {
 require(valueSent >= underlyingAmount);
 }
 _orderBook.addOption(this);
 ...
}

Figure 4: Option Instantiation Pseudocode
Based on the option parameters, client side scripts pre

calculate how much collateral (valueSent) the creating user
needs to send to the option smart contract to make the process
seamless. The contract validates all attributes of the option as
shown in Figure 4 with the require keyword.

When a second user chooses to take the other side of the
option, the smart contract again validates the call and
collateral before making the option active.

2.4.2 Option Exercising
Options can be exercised by the click of a button in the
dashboard. Using a back-end price fetcher, we can indicate to
the user which options are in or out of the money. This feature
is for convenience only, and the option contract performs its
own, independent price fetching and tests to ensure callers do
not spoof the price. A call to exercise the smart contract
validates the sender’s address and option status before
distributing the Ether accordingly.

The buyer receives

currentET HP riceUSD
currentET HP riceUSD − strikeP riceUSD

and the seller receives the remaining collateral,
strikeP riceUSD

currentET HP riceUSD
in Ethereum. Once the parties have received the Ether, the
smart contract self destructs to free up space on the blockchain
and return the creation cost to the creator.

2.4.3 Fetching Price
Firstly, the price of Ether differs from exchange to exchange
as the markets move with supply and demand, which may
differ between exchanges. Secondly, using an exchange for
price means relying on, and trusting, a third party -- a concept
which contradicts our Design Principles. Lastly, blockchains
are innately blind to the outside world, and can only make
calls to other addresses in the blockchain, not APIs.

The option smart contract partially solves this by using an
Ethereum Oracle, a smart contract/web-server service
dedicated to making calls to resources outside of the
blockchain2. In exchange for calls to their service, the oracle
requires a small toll from the calling contract. This toll is
offloaded onto the user who makes the call to exercise to
prevent successive calls from draining the contract balance.

To avoid having a single point of failure, and to distribute
trust, the option contract calls several different APIs to
interpolate a price. One additional strategy which could be
implemented to reduce dependency on a single oracle would
be to make the different API calls described above using
different oracle services, and similarly interpolating a price.

2.4.4 Option Cancellation and Reclamation
The cancellation and maturity times passed in to the contract
on initialization specify conditions under which the contract
may be canceled or becomes void. Cancellation time refers to
the time when a contract can no longer be accepted by a
second user as they are removed from the exchange, which
allows users to place a time limit on their offers. This is meant
to prevent option creators taking on undue risk in the
environment of a volatile market. Options can also be
cancelled by users with the click of a button.

Maturity time refers to the expiration of the option. At
this point, the smart contract will no longer accept function
calls, and if the smart contract is called after this point, the
contract will return Ether to the seller and self-destruct to free
up blockchain space. Unfortunately smart contracts currently
have no means of monitoring themselves and their attributes
and can only be triggered by external function calls. This
means that contracts cannot automatically void themselves
once the cancellation time reached or release funds at
maturity, so we place checks in function calls to ensure that
we have not exceeded these time limits.

2.5 Communication Protocols
The two channels of communication are between the server
and user and user and blockchain. As described in Section 2.2,
the server scripts provide a level of abstraction and a user
interface to clients to make calling contracts simpler. All
packets received for the front-end are sent through
HTTPS/SSL, thereby verifying that they are authentic and
preventing adversaries from modifying server-sent code.

The communication between users and blockchain
happens with the JSON RPC protocol. This is implemented by
Web3, the industry standard API used to communicate with
the Ethereum blockchain in web applications. All messages
sent to smart contracts are cryptographically signed, allowing
contracts to verify the identity of message senders.

3 Security Analysis
We will first analyze our security by showing defenses against
a handful of major attacks that we kept in mind while building
the system. We will also describe a few flaws of our system
that we hope to amend in the future.

3.1 Malicious Node.js Server
As noted in the description of the node.js web-server in the
system description above, all scripts provided to the client are
to make interactions with the options exchange and existing
smart contracts intuitive and user-friendly. However, if the
server becomes compromised, it contains no user information
and no option contract state, so no harmful modifications can
be performed. If the server becomes unresponsive and cannot
provide scripts at all, the client does not rely upon the user

3

interface given by the server; it it is still possible for the user
to manually make calls to their existing option contracts, as
well as make calls to the order book contract to obtain the
current state of the system and accept/propose new open
contracts.

3.2 Spoofed Options Smart Contracts
An adversary may create a custom smart contract with the
same interface as an option smart contract that simply
forwards all funds to oneself. Such a contract would appear to
a user to be a real option contract, but could steal the user’s
Ether if they tried to accept it. To protect users from these
malicious contracts, the order book verifies all new contracts
added to the exchange, checking the bytecode (the actual
binary instructions that make up the code and structure of a
smart contract) of the new option, and verifying that its hash is
what we expect of a legitimate option smart contract. Only
new smart contracts that have the same hashed bytecode will
be added to the exchange. This prevents malicious smart
contracts from being viewed in the exchange.

3.3 Smart Contract Timestamps
Both cancellation and reclamation calls to the smart contract
are transactions that need to be mined. In these specific
transaction operation, the smart contract relies on a current
timestamp of the transaction’s miner to validate that the call
and to cancel or expire the contract. Since the transaction
miner provides the timestamp, an adversary could mine their
own transaction and provide incorrect timestamps. This attack
would allow an adversary to cancel an option early to reclaim
their funds or exercise an option after expiry.

This vulnerability, however, is addressed by a passive
property of the blockchain: if a block’s timestamp is too far in
the future, no other blocks will be appended to it.
Additionally, blocks cannot have timestamps earlier than their
parent block. Thus, in the event that an adversary has the
compute power to mine their own malicious transaction, it
would become a dead fork in the blockchain, rendering it
invalid.

3.4 Metamask Unreliability
Since our initial system design, vulnerabilities in Metamask
have been identified which can lead to adversaries leaking
private keys or tricking users into transfering Ether to
adversary-controlled addresses6. We have been especially
careful to ensure that cross-site scripting attacks cannot be
mounted on our website, so many of these Metamask
vulnerabilities cannot be enacted. Alternatively, we may adapt
our interface to be more accepting of alternative client wallet
providers in the future.

3.5 Reentrant Functions
All functions in the smart contracts need to be sure to set the
updated state of the contract before passing control flow out of
the current function. Failure to do this may result in an attack
known as reentry, where transferred control may continue to
withdraw funds from a vulnerable contract that does not
update its internal bookkeeping. We have designed our
contracts to be secure against reentrant attacks.

4 Future Work
One existing issue with developing smart contracts is that once
a smart contract is deployed to the blockchain, its API
function calls cannot be edit or changed. Buggy contracts may
lock up user funds, allow arbitrary users to drain their funds,
or be otherwise vulnerable to attacks. Given the importance of
detecting vulnerabilities in smart contract code, we propose
that once we have a version of the option smart contract and
the order book smart contract which are ready for deployment,
we construct a formal proof for both of these contracts to
prove correctness of the code. Amazon has used these formal
proofs to identify dozens of new bugs across a few of their
web systems, and actively use this technique on developing
products3. An additional bug/vulnerability identification
technique which we are looking to apply to the completed
distributed options exchange system is symbolic execution.
Symbolic execution represents all variables derived from
function inputs as symbolic values as opposed to concrete
values. This representation allows for the analysis of systems
under every possible input space, and reveals overlooked
corner cases. For a more in depth description of symbolic
execution, see EXE5.

Additionally, to reduce our dependence upon single third
parties for price information, we may explore the design of a
system that consumes price information from multiple sources
and rewards sources for supplying accurate information. Thus,
single malicious suppliers may have no effect on the effective
price used in the exchange, and suppliers are motivated to be
benevolent.

5 Conclusion
From a financial perspective, our platform is still relatively
simple. The underlying technical aspects present real value in
the realm of decentralized and trustless systems. The system’s
UI and APIs can easily be expanded to include more types of
derivatives and even currencies other than Ethereum.

References
1. https://metamask.io/
2. http://www.oraclize.it/
3. Use of Formal Methods at Amazon Web Services

(http://lamport.azurewebsites.net/tla/formal-methods-
amazon.pdf)

4. EXE: Automatically Generating Inputs of Death
(https://web.stanford.edu/~engler/exe-ccs-06.pdf)

5. https://ipfs.io/
6. 6.857 Final Project: Zhang, Shao, Chang, Hao

4

https://metamask.io/
http://www.oraclize.it/
http://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
http://lamport.azurewebsites.net/tla/formal-methods-amazon.pdf
https://web.stanford.edu/~engler/exe-ccs-06.pdf
https://ipfs.io/

