
Research and Implementation of
Multiple Blockchain Byzantine Secure

Consensus Protocols for Robot
Swarms

Agnes Cameron, Mark Payne, Bruno Prela

May 16, 2018

Abstract

Distributed consensus mechanisms are key in ensuring the in-
tegrity of decisions made by decentralized systems. These mecha-
nisms must be robust to bad actors, but this robustness should not
come at a cost to efficiency and scalability. In blockchain systems,
the development of heterogeneous consensus mechanisms might be
a means of avoiding the inherent scaling problems in the proof of work
algorithm. Methods by which these consensus mechanisms might in-
terface with one another – forming a so-called ‘multi-chain’ system –
are currently of great interest. We present a proof-of-concept for a
multi-chain system in the area of swarm robotics.

1 Introduction

Recent advances in blockchain technology have led to an expansion be-
yond cryptocurrencies, namely to applications that require forms of dis-
tributed consensus. At the same time, there has been growing interest
in the field of swarm robotics for applications in farming[1], search-and-
rescue[2], and delivery systems. For practical reasons these systems of-
ten need to operate in a decentralized or distributed manner, and thus they

1

require protocols that are Byzantine fault tolerant (named after the famous
Byzantine Generals Problem [3]).

We build on the work of Strobel et al.[4] to investigate and implement a
multi-blockchain Byzantine fault-tolerant consensus protocol for a swarm
robotics application.

1.1 Blockchains as Distributed Consensus Mechanisms

In 2008, the publication of Satoshi Nakamoto’s Bitcoin: a Peer-to-Peer
Electronic Cash System [5] created the first practical implementation of a
blockchain system. The blockchain acts as a distributed ledger for trans-
actions between peers in the network, with every node in that network
carrying a full copy of this ledger.

A powerful concept presented by blockchain systems is the idea of
distributed consensus, where agreement can be reached among a number
of decentralized peers. Bitcoin uses a consensus mechanism called proof
of work (PoW), which uses computational expense to prevent bad actors
from changing the state of the system through illegal means.

In 2015, Vitalik Buterin released Ethereum [6]. Ethereum differs from
Bitcoin in that it allows for the execution of Turing complete code (written
in a language called Solidity) as part of the blockchain. This code is de-
fined by a set of entities known as ‘Smart Contracts’. The concept of smart
contracts dates back to Nick Szabo in 1994, who envisioned a means of
allowing complex social forms of agreement to be encoded in a distributed
digital system [7]. Ethereum also currently uses the PoW consensus algo-
rithm employed by Bitcoin, though Buterin has declared that the currency
will soon adopt a hybrid Proof-of-Stake (PoS) and PoW model [8].

1.2 Scalability Problem with Blockchains

Inherent in PoW are issues with scaling and speed. By design, PoW al-
gorithms are slow, as the system must wait for each node in the network
to come to consensus, on top of the time required for mining. For exam-
ple, in Bitcoin the difficulty of mining a block is purposely set so that on
average a block is mined every 10 minutes, allowing enough time for the
block to be communicated across the network. Even through condensing

2

multiple transactions per block, this difficulty setting results in a limit on
transactions of around 3/sec for Bitcoin (compared to Visa’s 45000/sec).

Numerous proposals (PoS included) have been made to rectify this.
For example, in PoS blocks are appended to the blockchain by a small set
of predetermined validators who have some sort of stake in the transaction
[9]. PoS systems are considerably more environmentally friendly, as they
don’t require the computing power of PoW–they simply rely on the agree-
ment of the nodes. However, the state change of the system is still tied
to the consensus protocol, which means that an ultimate limit is placed by
the time it takes to agree between the nodes.

Another issue is the size of the chain that must be stored. Currently
in both PoW and PoS systems, each full node stores the entire state of
the blockchain, to verify the validity of added blocks. In Ethereum, this is
at least 20GB (though this changes depending on the sync mode used,
and can be up to 385GB) while Bitcoin’s blockchain was around 150 GB in
size by the end of 2017[10]. This storage requirement can be overwhelm-
ing for smaller systems, and poses a problem for expanding blockchain
technology into IoT devices and swarm robotics systems.

1.3 Proposed solutions to the Scalability Problem

Inherent in both PoW and PoS systems is an absolute limit imposed by
the fact that the state of the system is tied to the consensus mechanism.
Thus, the demand made by the network for each state transition can never
be higher than the demand made of a single node. There are several
major solutions to this scalability problem that have been proposed in the
context of Ethereum, including sharding, the Raiden network and Plasma
chains.

Sharding divides the nodes on the Ethereum blockchain into smaller
sub groups, within which miners compete to verify group transactions, al-
lowing multiple transactions to be validated in parallel across different sub-
groups. This also diminishes the total size of the blockchain that must
be stored at each node[11]. By contrast, the Raiden network proposes a
method known as ‘state channels’ – moving the majority transactions off-
chain, allowing them to be processed immediately by a collection of nodes
that establish these channels amongst themselves. This has advantages
for of IoT and microtransaction -based systems, as it does not involve a

3

wait for block confirmation[12][11].
Plasma proposes a system of hierarchical side-chains, managed by

smart contracts. Each ‘child’ chain periodically relays information to its
‘parent’, and in turn that information is relayed up the tree, eventually lead-
ing back to the root Ethereum chain[11].

1.4 Multi-Blockchain Protocols

Similar in proposition to Plasma, there have also been proposals for smart-
contract mediated systems that go beyond the Ethereum blockchain, al-
lowing heterogeneous consensus protocols to interface with one another.
These systems have a pragmatic advantage in that they can provide a link
between different forms of governance (e.g. PoW, PoS, FBA), and pro-
vide interoperability between public and private blockchain systems[13].
The Cosmos system proposes a hierarchical system not dissimilar to side-
chain and Plasma solutions, which uses a master ‘hub chain’ and ‘zoned
chains’. Multiple heterogeneous chains operate in ‘zones’, though the in-
centivization of validators for these chains remains an unsolved problem[14].
Polka Dot proposes a more complex system that leverages shared security
between chains, navigating a criticism of multichain systems that security
is compromised by reducing the number of agents per chain.

1.5 Swarm Robotics

Forms of decentralized and peer-to-peer agreement are also highly rele-
vant in swarm robotics applications. Swarm robots are particularly capable
in solving problems covering a large physical area, requiring peer-to-peer
co-ordination to communicate effectively. Increasingly as these systems
are implemented in real-world scenarios, we might expect to see examples
where swarms must not only coordinate robustly amongst themselves, but
with other swarms with different modes of agreement.

1.6 Security Concerns in Swarm Robotics

Whilst many swarm robotic systems cite fault tolerance as a key feature,
many systems do not show robustness in the presence of malicious actors.
Valentini et. al[15] propose a series of federated agreement protocols for

4

generating consensus among swarms of robots. Although these voting
protocols are fault-tolerant, it is demonstrated by[4] that these systems are
not robust to the presence of malicious actors.

Strobel et. al[4] implement the consensus mechanisms proposed by
Valentini et. al[15] in a Byzantine fault-tolerant blockchain-based system.
In this system, each robot votes on what they believe to be the state of the
system, corroborated with information from their local peers (as before),
by submitting a smart contract. Each robot is run as a separate geth node
on the network, and peers are added and dropped depending on the local
group. By taking the longest blockchain in any peer group as the most
accurate representation of the consensus state, and blacklisting robots
submitting old or bad blocks, this system demonstrates significantly higher
resistance in the face of bad actors than that proposed in[15].

2 Methods

Initially, we had hoped to use and develop the code from Strobel et. al,
as this project was open-sourced after the publication of their paper. How-
ever, the codebase includes a large amount of extra complexity that makes
it difficult to build and edit. In the interests of effectiveness (wanting to
learn about coding multi-blockchain systems, rather than debugging other
people’s code), we opted to write our own, simpler system from scratch.
The Strobel code did, however, provide us a useful framework to start our
investigation, and we are grateful to the authors for its publication.

Below we describe our simulation, including the game for our tested
swarm robotics application, as well as our codebase to develop a Javascript
web application to perform and visualize this simulation.

As a final note, this investigation is intended as a proof-of-concept,
rather than something that should be implemented wholesale in a real
system.

2.1 Harvesting Game Definition

To implement our proposed multi-blockchain consensus protocol, we sim-
ulated a game called the Harvesting Game, which is defined as follows.

5

Figure 1: Voting in the Harvest Game

The game occurs on a square grid meant to represent a large farming
field. Each of the squares in the grid can take on one of the two possible
attributes: dirt or crops. The field is to be maintained by a two swarms of
robots, who collaborate and monitor the percentage of dirt-vs-crops, and
decide when to harvest. We will assume that the field is sufficiently large
such that the robots can only communicate with their nearest neighbors,
and thus this consensus must be reached in a distributed manner.

The first type of robots are surveyBots, which are ultimately responsible
for building a model of an environment. They can move relatively quickly,
and ultimately must come to a consensus about the majority state of the
grid. To come to this consensus, these robots vote on a private blockchain.

The other type are the harvestBots, which are responsible for deciding
whether or not to farm the field when they agree that the surveyBots have
reached a consensus about the state. To do this, these robots operate on
a different private blockchain to the surveyBots, but in order to know when
to harvest, they have to communicate robustly with the surveyBots.

The harvestBots make calls to the surveyChain directly, using a con-
tract call, and then report back to their group on what information they

6

gather. This is complicated by the fact that members of both groups might
be Byzantine. However, as non-byzantine surveyBots should all report
the same values (as they are reporting the value of the last block to be
appended to the chain), by using a consensus mechanism among the har-
vestBots, false values should be weeded out.

In this system, the consensus protocol implemented by each blockchain
is not the consensus protocol implemented by the robots. This decoupling
is deliberate. Rather, the robots use the blockchain as a means of de-
centralized voting upon a concept that each agent cannot have absolute
knowledge of. Because of this, an honest robot might submit an incorrect
vote: it is the collective voting of the robots which allows consensus on the
state of the system to be reached.

2.2 Coding Overview

The code for this project can be found at https:// github.com/ brunoprela/
multiple_blockchain_swarm_robotics (along with instructions on how to
deploy it). The code is essentially a Javascript web application with a front-
end for visualizing the simulation while most of the consensus protocols
and smart contracts being handled on the back-end. Figure 2 shows the
visual layout of the simulation as defined in client/index.html. As shown
in the figure, the field is represented by a 16x16 grid composed of squares
for dirt and crops. Different shapes are used for each type of robot, and
different colors are used to distinguish byzantine robots from each other.

In the simulation, the survey robots (with their ability to move quickly
and observe the state of the square directly underneath them) first move
about the grid for 10 steps (in our case the steps are in random directions).
The harvestBot swarm moves once every 10 timesteps. At this point, the
harvester robots communicate with the survey bots and try to come to a
consensus as to the state of the surveyBot system.

2.3 Smart-Contract Based Distributed Consensus Mech-
anism in Solidity

To reach a consensus about the state of the field (majority crops or dirt),
the swarm robots execute smart contracts (written in solidity) that run on
a private Ethereum network. After 10 steps surveying the grid, each robot

7

Figure 2: View of the Simulation Environment

Grid showing honest surveyBots (black ’x’), honest harvestBots
(black ’o’), and Byzantine surveyBots and harvestBots (blue ’x’
and ’o’ respectively). The green grid squares represent healthy
crops, the brown represent dirt.

forms an opinion about the state of the field. Instead of submitting their
own opinion though, instead each survey robot polls the opinions of the its
nearest neighboring robots that it can communicate with and chooses the
most popular opinion (including counting its own) as its vote. This is known
as majority voting, as described first by Valentini [15] and mentioned later
again by Strobel [4].

These votes are then submitted to the smart contract, defined in smart

contracts /surveyVoting.sol. The smart contract then determines the
majority vote submitted by all survey robots, and if all votes are for the
majority, returns that a consensus has in fact been reached.

The smart contract also outlines a procedure for identifying and weed-
ing out Byzantine robots. After each round of voting, the smart contract
makes notes of each robot address that submitted a vote for the minor-

8

ity opinion, and increments a counter associated with this address of the
number of times this has occurred. After enough rounds have passed (ar-
bitrarily set at 4), if the counter for a certain address has exceed a number
greater than half the number of rounds, then the robot is deemed Byzan-
tine and is prevented from voting again in future rounds.

The idea behind this scheme is simple–(barring a 51% attack) we ex-
pect to be able to ID Byzantine actors by the fact that they continue to vote
in the minority, which is especially obvious when surrounded by robots
who have the majority opinion. While this scheme is simple, it is poten-
tially vulnerable when there are a significant number of adversarial robots
(as opposed to generally faulty robots), though this will be discussed later
on.

A similar scheme is used for the harvester robots, implemented in the
smart contract smart contracts/harvestVoting.sol. The smart contract
is similar to the one used by the survey robots, with the main exception
being the variable that is being voted on.

2.4 Overview of Backend

The backend of the application consists of the blockchain management
tools and the database. The smart contracts folder contains the smart
contracts used by the system, and instructions to deploy them. We chose
to deploy our smart contracts on a test network using the Truffle suite of
tools (Ganache-cli specifically) because of the ease with which they allow
you to develop a test network and communicate with it through Web3. The
obvious drawback to having such simplicity is that we had less control over
the nature of our test network (although the detailed config files help). The
reason for taking this tradeoff was that the Go implementation of Ethereum
(geth, a demonstration of which is shown in Figure 4), which is used for
interacting with the main Ethereum chain as well as for interacting with
your own private test chains in greater depth, is difficult to work with and
requires using much lower level language and much more complex con-
siderations. In fact, it is the primary reason we decided to develop our own
simulation environment. We discuss the possible extensions to the back-
end which could help others get started researching this topic using our
code more easily in Section 3.5.

The database section is mostly contained in the server folder, and con-

9

tains code for a Node.JS server with models for handling robots, experi-
ments and swarms, as well as a fully developed GraphQL API. This section
is not actually in use, and most of our state management is happening on
the clientside. We would have liked to move our logic to a client-server
logic structure so that we could keep more in-depth data on our experi-
ments and offload some of the logic from the clientside. As the scale of
our experiment was relatively small, we decided against it and invested
more time on other aspects of the project. One of the problems we found
the Strobel codebase was having was simply the storage of experimental
data (which geth makes nearly impossible to do neatly and outside of print-
ing to files and reading them back up again with other code). Discussion
of why we put this code in here and how we wish to extend it in the future
can be found in Second 3.5.

2.5 Experimental Overview

In order to test the system, the simulation was run with varying numbers of
Byzantine robots, and a variable difficulty problem in identifying the domi-
nant ‘floor’ tile.

Overall, we were looking to see if the simulation would correctly identify
and weed out the Byzantine robots (easily seen as the robots would turn
yellow) without incorrectly identifying any truthful robots (in our code this
would cause the robot labels to turn red).

Much of our choices unfortunately were governed by the fact that Ethereum
effectively regulates the amount of computation that can be required in a
smart contract through the use of ’gas’. For example, each elementary
operation in a smart contract has an associated amount of gas required to
execute the contract, which must be payed by the parties involved in the
contract to the miner (that way the reward for the miner is adjusted by the
computational cost).[16]

It is very easy for a contract to quickly run out of gas, as was the case
for our system. In fact, one source looked at comparing the cost of ex-
ecuting code in a smart contract (based on the current price of gas in
Ethereum) and concluded that computation in Ethereum is about $400
million times as expensive as the cost of running computation on commer-
cial servers.[16] Thus, it does not take a whole lot of computation before
the cost of the contract becomes too high.

10

Because of this, we required a low number of rounds (just 4) before
weeding out Byzantine robots, and used a threshold of 50% of the rounds
in the minority for identifying Byzantine robots. This allowed for the sys-
tem to reach consensus quickly so as not to exceed the gas limit on the
contracts.

3 Discussion

Overall we believe this system satisfied the aim of managing an interaction
between two blockchains, while also presenting a valid proof-of-concept of
the merit of multi-blockchain technology in the field of swarm robotics. As
we review our results, though, we also note that we suffered significant
drawbacks which prevented us from developing a truly Byzantine fault
tolerant system, and from developing the level of software infrastructure
around our experiments that we would have liked to simulate more realis-
tic settings.

Figure 3: Successful running of two heterogeneous blockchains in
ganache-cli

11

3.1 Limitations

This system was limited in that we were not able to tie each robot to a
separate geth instance, due to the difficulty in configuring more than one
geth node programatically (rather than through individual consoles). In the
code used by [4], much of the extra complexity is associated with admin-
istering these nodes. Included in the repository is a forked and modified
version of Strobel et. al’s [4] C++ code to minimally launch and control
multiple geth instances from the same console server/geth_processes.
However, there was not time to bind the C++ to the Javascript backend,
and as such this is left for potential future development.

Ultimately, the use-case for geth is to run nodes on the EVM, not to
construct elaborate test-cases on a local machine. This limitation makes
very experimental systems such as this very difficult to develop. In coming
years, the development of more flexible and general multi-chain APIs will
aid in developing these more specialised applications.

Figure 4: Demonstration of running multiple geth processes on a single
computer, using the eth-netstats command line visualiser

3.2 Real World Considerations

A real world system would expect many issues not faced in our simulation.
Many of these issues concern networking and sensing issues. For exam-
ple, the robot nodes in a real life swarm may have much sparser neighbor-
hoods of robots to communicate with. These networks would also be much
more prone to failure and communication may take much longer in a real

12

system, resulting in a potentially much slower convergence to consensus
for a swarm.

In addition, we implement a Proof-of-Authority algorithm to submit blocks
to the chain. Whilst PoA is fast, it relies on authentication to the system
not being leaked, which immediately leaves it vulnerable to bad actors.

Overall the problems inherent in peer-to-peer robot systems are vital to
several public and private entities, including shipping companies such as
Amazon, and they mostly stem from the problems associated with most
distributed systems.

3.3 Other Security Concerns

As mentioned previously, our scheme for identifying and blacklisting byzan-
tine robots involves looking at the number of times a given robot has voted
against the majority. With this scheme, it is easy to identify faulty robots
that aren’t voting properly as we expect them to do this consistently. In
the event that a significant portion of the robots are instead adversarial
though, it is possible that there exist strategies for subverting the security
of the protocol.

For example, it is conceivable that a small group of adversarial robots
could “gang-up” on non-Byzantine robots to influence them to repeatedly
vote for the minority. The adversarial robots could then alter their votes
as needed to remain undetected as Byzantine, while slowly reducing the
numbers of non-Byzantine robots by making them appear Byzantine. A
worst case scenario would be that these robots could weed out enough
truthful robots to be able to mount a 51% attack.

While this idea is intriguing, this idea was not explored in the limited
time of this study, but should be considered in future work that explores
this technique.

3.4 Future Work

A main drawback of this implementation was that it was not possible in the
time to create an individual geth node for each robot, thus limiting the peer-
to-peer aspects of the system, and not allowing us to implement some of
the Byzantine fault-tolerant logic discussed by [4].

13

In addition, we would like to extend this system to collect more exten-
sive simulation data. A more flexible GUI that can allow people to setup
arbitrary grids and swarms setups and perhaps allow them to modify a
basic Solidity contract for each swarm would allow experiments to be set
up and run considerably more efficiently. It would also be useful if we had
time to integrate the database (which is already setup in our repo) into our
experiment setup. This would allow us to easily store information about
the entire state of the system, enabling more effective debugging and de-
velopment.

We would also be interested in developing the following extensions:

1. Implementing heterogeneous consensus protocols among our swarms,
for example implementing Federated Byzantine Agreement (as used
by the Stellar protocol [17]), or a protocol that has more grounding in
the physical system, such as Proof-of-Location [18]

2. Implementing consensus on a more complex set of data (something
more complicated than a boolean or numerical value).

3. Using a different method of scaling for swarm robotics: for example,
the Raiden network has a number of features that

4. Studying the behavior of adversarial actors instead of just faulty ac-
tors.

4 Conclusion

In this work, we discussed the application of multi-blockchain technology
in Byzantine fault tolerant distributed consensus protocols for potential use
in swarm robotics system, building off of the previous work of Strobel et
al. While we were able to setup a Javascript web application for sim-
ulating a swarm-robotics based game successfully using two interacting
blockchains, we were severely limited in testing our algorithm due to con-
tinually exceeding gas costs in the smart contracts used to implement the
protocol. In many of the tests that we were able to run, the swarm robots
were able to reach a consensus successfully, though occasionally at the
cost of incorrectly identifying non-Byzantine robots as Byzantine.

14

As noted previously, this scheme is work towards a proof of concept
and is not intended to be a fully implemented, fully vetted protocol. That
being said, it is the authors’ opinion that this system shows promise. For
one, the Javascript web application is a useful frame work for future work
on this problem. Furthermore, while we chose to use local development
tools, this protocol could be adapted to run on a public Ethereum network.
This opens up the potential for future work to overcome the gas limitations
that hindered this study to choose reasonable parameters and protocol
details such that the proposed protocol can work as intended using simple
changes to the existing codebase.

References

[1] Saga, “SAGA – Swarm Robotics for Agricultural Applications,” 2018.

[2] R. Bloss, “Advanced swarm robots addressing innovative tasks such
as assembly, search, rescue, mapping, communication, aerial and
other original applications,” Industrial Robot: An International Journal,
vol. 41, no. 5, pp. 408–412, 2014.

[3] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Transactions on Programming Languages and Sys-
tems, vol. 4, no. 3, pp. 382–401, 1982.

[4] V. Strobel, E. Castello Ferrer, and M. Dorigo, “Managing Byzantine
Robots via Blockchain Technology in a Swarm Robotics Collective
Decision Making Scenario,” no. December 2017, p. 12, 2018.

[5] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
www.Bitcoin.Org, p. 9, 2008.

[6] G. Wood, “Ethereum: a secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, pp. 1–32, 2014.

[7] N. Szabo, “Smart Contracts,” 1994.

[8] V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,” pp. 1–
10, 2017.

15

[9] V. Buterin, “A Proof of Stake Design Philosophy,” 2016.

[10] Statista, “Size of the Bitcoin blockchain from 2010 to 2017, by quarter
(in megabytes),” 2017.

[11] Imbrex, “Sharding, Raiden, Plasma: The Scaling Solutions that Will
Unchain Ethereum,” 2017.

[12] J. Stark, “Making Sense of Ethereum’s Layer 2 Scaling Solutions:
State Channels, Plasma, and Truebit,” 2018.

[13] G. Wood, “Polkadot: Vision for a Heterogeneous Multi-Chain Frame-
work,” pp. 1–21, 2017.

[14] J. Kwon and E. Buchman, “Cosmos: A Network of Distributed
Ledgers,” 2018.

[15] G. Valentini, E. Ferrante, and M. Dorigo, “The Best-of-n Problem in
Robot Swarms: Formalization, State of the Art, and Novel Perspec-
tives,” Frontiers in Robotics and AI, vol. 4, no. March, 2017.

[16] A. Rosic, “What is Ethereum Gas: Step-by-Step Guide,” 2018.

[17] D. Mazières, “The Stellar Consensus Protocol: A Federated Model for
Internet-level Consensus,” pp. 1–45, 2015.

[18] F. Corp, “Whitepaper,” 2018.

16

Revised Results

Agnes Cameron, Bruno Prela, Mark Payne

1 Results

In general, we found that our model worked well for easier consensus problems (times where there was a large
difference between the number of dirt and crop squares), but failed catastrophically when that difference was
subtle. The time to consensus (measured as the time for the harvestBots to determine that the surveyBots
had come to consensus), is shown in fig. 1. This largely decreases with the easiness of the consensus problem,
as the robots are able to identify byzantine actors and reach global agreement faster. The results of this
figure exclude simulations that failed to reach a consensus, however: the chance of these events occurring
decreased as the problem got easier. For all these simulations, 1/3 of the actors was Byzantine, as in the
original Byzantine Generals Problem.

Figure 2 shows the success in identifying Byzantine robots as a function of the easiness. In easy problems,
where most of the robots agree immediately, the discovery of Byzantine actors is successful. However, for
harder problems, the uncertainty in the swarm as a whole makes it much harder to identify Byzantine actors
based purely on the votes that they gave. Figure 3 shows the number of false accusations as a function of
easiness. In the harder problems, robots are more likely to vote for the ‘wrong’ option, making them vulnerable,
based on their vote pattern, to being identified as Byzantine.

These harder problems sometimes resulted in catastrophic failure, where the false accusation of an honest
robot makes the number of honest votes decrease, making it easier for Byzantine actors to succeed.

2 Brief Discussion

Our system was able to reach consensus between two blockchains in the face of Byzantine actors, fulfilling a
key goal of the project. However, our Byzantine detection algorithm is sorely in need of improvement, and
the system cannot be described as ‘Byzantine Fault Tolerant’, as in Lamport’s original problem, if there is any
majority at all between the honest actors, the correct vote should be made. In addition, even in ‘successful’
runs, the occasional false accusation of an honest robot could be costly to a system, and unacceptable in an

Figure 1: Average time to consensus as a function of easiness

1

Figure 2: Average number of Byzantine robots successfully found, as a function of easiness

(a) Average byzantine surveyBots found (out of 6 pos-
sible)

(b) Average byzantine harvestBots found (out of 3
possible)

Figure 3: Average number of honest robots falsely accused, as a function of easiness

(a) Average honest surveyBots falsely accused (out of
14 possible)

(b) Average honest harvestBots falsely accused (out
of 14 possible)

2

Figure 4: Comparing different outcomes for the swarm

(a) Typical successful round, 70% dirt. Successfully-
identified Byzantine robots are in yellow, undiscovered
Byzantine in blue, and falsely accused in red

(b) Catastrophic failure , 60% dirt. Successfully-
identified Byzantine robots are in yellow, undiscovered
Byzantine in blue, and falsely accused in red

industrial context. By improving the Byzantine algorithm, we would hope that this can become a workable
system.

There was also an additional but subtler issue associated with the spatial distribution of the harvestBots.
Sometimes, identification of the byzantine robots failed as the harvestBots were too sparsely distributed.
Without the opportunity to add robots to a peer network, it was harder to identify a global consensus. Were
we to run these experiments another time, we would make the range of the harvestBots larger to compensate
for this sparse distribution. However, this does confirm the importance of the peer voting mechanism used.

3

